Inhalation toxicity of non-nicotine e-cigarette constituents: risk assessments, scoping review and evidence map February 2022 # Acknowledgements This research is a project of the National Health and Medical Research Council (NHMRC). The project was not specifically funded, however contributors of the report are either paid employees of NHMRC or are members of the NHMRC Electronic Cigarettes Toxicology Subcommittee (Subcommittee). The information and opinions contained in this report do not reflect the views of the NHMRC. NHMRC and the Subcommittee would like to thank and acknowledge the significant contribution of Australian Industrial Chemical Information Scheme Evaluation Section staff for data consultation, extraction and expertise provided as a part of the toxicology assessment section of this report. February 2022. ## **Contents** | Executive Suffilliary | | |--|-----| | Background and objectives | 1 | | Methods | 1 | | Key findings | 2 | | Conclusions | 3 | | Background | 4 | | Objectives | 5 | | Toxicology assessment | 6 | | Background and objectives | 6 | | Methods | 6 | | Results | 7 | | Discussion | 9 | | Conclusion | 10 | | Scoping review | 11 | | Background and objectives | 11 | | Methods | 11 | | Results | 14 | | Discussion | 18 | | Conclusion | 18 | | Discussion and conclusions | 19 | | Conclusion | 21 | | References | 22 | | Appendices | 25 | | Appendix A: National and international databases scanned by the AICIS Evaluation Prioritisation Tool | 25 | | Appendix B: Sample search strategy for scoping review | 28 | | Appendix C: Toxicological assessment data for chemicals identified as being use in e-cigarettes | 29 | | Appendix D: Excluded studies from scoping review | 112 | | Appendix E: Table of characterisitics for included studies | 213 | | Appendix F: Plain-English summary | 240 | ## **Executive summary** #### **Background and objectives** Electronic cigarettes (also known as e-cigarettes, e-cigs, electronic nicotine delivery systems, electronic non-nicotine delivery systems, alternative nicotine delivery systems, personal vaporisers, e-hookahs, vape pens or vapes) are electronic devices that heat a liquid (or e-liquid) to produce an aerosol to inhale (known as vaping) [1]. The evidence on e-cigarettes is constantly evolving. E-cigarettes are relatively new products and most of the direct evidence on e-cigarettes is limited to short-term studies. Indirect evidence, such as studies that examine the long-term health effects of substances used in e-liquids, such as formaldehyde, can be useful to obtain a complete picture of the safety and potential long-term impacts of e-cigarette use. The e-liquids are commonly made by combining flavouring chemical mixtures in a solvent mixture [2]. E-cigarette e-liquids can contain nicotine, but have been reported to also contain flavourings and harmful substances such as heavy metals, volatile organic compounds and cancer-causing chemicals [3] [4]. Recent reports have found over 200 unique ingredients (constituents) used in e-liquids [5] [6] [3]. These reports [5] [3] have also found that the known chemicals currently used in e-cigarettes are also used for other purposes, such as food processing, medicines and in the manufacture of other consumer goods. These chemicals have most likely undergone toxicological risk assessments. However, these risk assessments may not be comprehensive and risks to health via inhalation is not commonly addressed in food or medicine assessments [7] [8]. Given the established evidence on the safety and health impacts of nicotine and the wide range of non-nicotine substances in e-liquids and potentially inhaled via e-cigarettes, this report will consist of two components: 1. A summary of the toxicological risk assessments of each chemical currently known to be used in e-cigarettes. Objectives: (i) to examine the toxicological risk assessments and identify the health risks of chemicals known to be currently used in e-cigarettes and (ii) to identify if any of the known chemicals are permitted to be used (in Australia) for consumption via food and/or medicine and whether they have been assessed for inhalation toxicity. 2. A scoping review to ascertain the extent, range, and nature of the evidence available on toxicology associated with the inhalation of e-liquids. Objective: to examine the extent (that is, size), range (variety) and characteristics of the evidence published since 2019 on the inhalation toxicity of e-liquids used in electronic nicotine delivery systems and electronic non-nicotine delivery systems and highlight key research gaps. #### **Methods** #### Toxicology assessments The 2019 Australian Industrial Chemical Introduction Scheme (AICIS) report on non-nicotine liquids for e-cigarette devices [5] was used to identify chemicals that are currently known to be used in e-cigarettes. Chemical names and associated Chemical Abstract Service (CAS) numbers were run through the Evaluation Prioritisation Tool (EPT) developed by AICIS, which captures assessment data nationally and internationally. Data on health risks was extracted from the EPT and pulled into Microsoft Excel. Additional analysis, such as Quantitative Structure Activity Relationship (QSAR), was not within the scope of this report. To determine if the identified chemicals are permitted for use in food and medicines in Australia, the chemical names were cross-checked by one author with entries in Food Standards Australia New Zealand's (FSANZ) *Schedule 15 - Substances that may be used as food additive* of the Australia New Zealand Foods Standards Code [9] and Therapeutic Goods Administration's (TGA) *Australian Register of Therapeutic Goods and Permissible Ingredients* [10]. Toxicology assessment data and permitted uses were analysed using descriptive statistics. #### Scoping review The scoping review was conducted according to the Joanna Briggs Institute guidelines [11] and reported in accordance with the PRISMA extension for Scoping Reviews [12]. The scoping review protocol was published on FigShare [https://figshare.com/articles/journal_contribution/NHMRC_E-cigarette_toxicology_scoping_review_protocol_pdf/18131045]. Studies were included if they were peer reviewed and published from 2019 onwards. Cochrane Central, MEDLINE (via Ovid), Embase (via Ovid), PsycInfo and CINAHL were searched on 20th July 2021. No further supplementary searches (such as searching reference lists) were conducted. Scientific literature was managed using EndNote (X9.2; United States of America) referencing software. The following data was extracted from the screened, scientific literature in to Microsoft Excel: study reference (title, authors, journal, year); study type based on labels used in the primary studies (e.g. experimental, cohort); exposure (e.g. e-liquids, individual chemicals); comparator (e.g. exposure vs. no exposure); outcome of interest (e.g. respiratory sensitisation, acute toxicity via inhalation); modifying factors (where data was available; e.g. type of device, frequency and duration of use). A risk of bias assessment was not conducted. Data was analysed using descriptive statistics. A characteristics of studies table was developed as well as an evidence map examining the number of studies by exposure and outcome type. ## **Key findings** #### **Toxicology assessments** According to toxicological assessment data, the majority of ingredients (chemicals) known to be used in e-cigarettes were associated with at least one or more health risk or suspected health risk (68.5%; n=253/369), including known or suspected acute toxicity (n=39), known or suspected carcinogen (n=82), known or suspected skin irritant (n=53), known or suspected skin sensitiser (n=114), and known to be harmful if swallowed (including fatal if swallowed; n=57). Of the chemicals known to be used in e-cigarettes, we identified 1 chemical permitted to be used in food in Australia by FSANZ and 4 chemicals classed as permissible ingredients for use in medicine by TGA that are considered harmful to inhale. Toxicological assessment data has an important role in identifying potential risks and identifying appropriate uses and handling for chemicals [13]. Whilst toxicological data was available for some of the chemicals, the comprehensiveness of this data, particularly for inhalation toxicity, is unclear as chemicals have not been assessed for this use (inhalation), but for other uses such as the manufacture of other consumer goods and ingestion as a component of food or medicine [14]. A large proportion of chemicals examined did not have toxicological assessment data available on inhalation toxicity (88.6%; n=327/369). It is important to note that the absence of data does not necessarily equal the absence of hazard. #### Scoping review After screening, 89 studies were included in the scoping review component of this report. Considerable variability in outcome of interest, study design and methodology was identified. The majority of included studies were experimental studies (65.2%; n=58/89 excluding randomised trials involving humans), however the type of experimental study (e.g. animal cell-based, biochemical) varied. Of the remaining study designs, just under a fifth were systematic reviews (19.1%; n=17/89). Cytotoxicity was the most common outcome of interest examined (n=24/89), followed by general toxicity (n=16/89), pulmonary toxicity (n=6/89) and cardiotoxicity (n=6/89). A number of the included studies examined e-cigarettes or e-liquids as a whole rather than specific constituents (12 of 89 studies examined individual constituents). The evidence on the differential health impacts of a specific flavour, solvent or humectant could not be determined. The evidence on the differential health impacts of nicotine-containing or nicotine-free e-cigarettes or e-liquids could also not be determined. It was common
for studies not to specify whether the exposure (e.g. e-cigarette, e-aerosol, e-liquid) was a commercial device or e-liquid, whether it was a specific flavour, or whether or not it contained nicotine. Long-term data on inhalation toxicity of e-cigarettes (both nicotine-containing and non-nicotine-containing) remains limited. Time and resource constraints meant it was not feasible to conduct a systematic review of all identified e-liquid constituents. #### **Conclusions** In line with other published literature, this report found that where data was available, the majority of chemicals currently known to be used in e-cigarettes are associated with health risks, based on toxicological assessments. A large proportion of chemicals examined did not have toxicological assessment data available on inhalation toxicity and it cannot be concluded that absence of toxicological assessment data equates to absence of harm. Considerable variability in the outcomes of interest, exposure, study design and methodology was identified through the scoping review. Further research is required. Standardised methods for evaluating e-liquids are required, including specifications on device type, base liquid, concentration, coil/heating temperature and puff size. Such standardisation would lessen the many complexities of assessing toxicological health risks of inhaling non-nicotine e-cigarette constituents. ## **Background** Electronic cigarettes (also known as e-cigarettes, e-cigs, electronic nicotine delivery systems (ENDS), electronic non-nicotine delivery systems (ENNDS), alternative nicotine delivery systems, personal vaporisers, e-hookahs, vape pens or vapes) are electronic devices that heat a liquid (or e-liquid) to produce aerosols to inhale (known as vaping) [1]. There is continuing debate as to whether e-cigarettes have a role in smoking cessation and their potential to reduce or increase individual and population-level harm [1]. The 2019 National Drug Strategy Household Survey report showed that fewer Australians are smoking tobacco daily, while the use of e-cigarettes is increasing. In Australia between 2016 and 2019 the proportion of smokers aged 14 years and over who currently use e-cigarettes rose from 4.4% to 9.7% and lifetime use rose from 31% to 39% [15]. An increase was also seen in non-smokers; between 2016 and 2019 the proportion of non-smokers aged 14 years and over who currently use e-cigarettes rose from 0.6% to 1.4% and lifetime use rose from 4.9% to 6.9% [15]. More than half (54%) of people who tried e-cigarettes did so out of curiosity [15]. The liquids in e-cigarettes are commonly made by combining flavouring chemical mixtures in a solvent mixture [2]. These e-liquids can contain nicotine, even if labelled "nicotine free" [16] [17] [18] and have been reported to also contain flavourings and harmful substances such as heavy metals, volatile organic compounds and cancer-causing chemicals [3] [4]. Recent reports have found over 200 unique ingredients (constituents) used in e-liquids [5] [6] [3]. In a recent report [19], the World Health Organization (WHO) identified gaps in the research base regarding the toxicants of Heated Tobacco Products (HTP), including e-cigarettes, and the effects on humans. These gaps include the need for more rigorous assessments of HTP emissions, including how they are absorbed in cells, harmful exposures and impact on health outcomes [19]. In Australia, there is limited publicly available information on the composition of e-liquids. These ingredients however are of interest due to concerns around chemical exposure, with many of the constituents (chemicals) posing harm to human health in certain situations [5]. There is evidence of e-cigarette use causing short term adverse health effects, however the long-term effects on human health from using e-cigarettes are unknown [5]. In comparison to studies on nicotine containing e-cigarette liquids, there is limited data available on the health implications of inhaling nicotine-free liquids [5]. Reports [5] [3] have found that the known chemicals currently used in e-cigarettes are also used for other purposes, such as food processing, medicines and in the manufacture of other consumer goods. These chemicals have most likely undergone toxicological risk assessments. However, these risk assessments may not be comprehensive and risks to health via inhalation is not commonly addressed in food or medicine assessments [7] [8]. Numerous international agencies undertake toxicological risk assessments or chemical evaluations to identify potential health and environmental risks of a variety of chemicals. These assessments provide information and recommendations about how to manage the risks of these chemicals and substances. The Australian Government continues to take a precautionary approach to e-cigarette regulation and policy, taking into consideration the context of existing approaches taken to reduce tobacco smoking and the risks e-cigarettes pose to population health, such as disrupting the decline of tobacco smoking in Australia [2]. Currently, non-nicotine containing e-cigarette liquids are legally sold in Australia and the ingredients are regulated as industrial chemicals for purposes other than use in e-cigarettes [5]. Human health and environmental risk assessments of these industrial chemicals are undertaken by the Australian Industrial Chemicals Introduction Scheme (AICIS), which publishes recommendations for safe use. Nicotine-containing e-liquids and certain nicotine-containing devices are not legally available to be imported, possessed or sold in Australia without a prescription from a medical practitioner and are regulated by the Therapeutic Goods Administration (TGA) under the Poisons Standard [5] [20]. Although it is illegal to sell e-liquids that contain nicotine outside of a pharmacy in Australia, incorrect and inaccurate labelling, such as undisclosed chemical ingredients, means consumers can unknowingly be inhaling nicotine [21]. Several reports and reviews have examined toxicity of e-cigarettes (e-liquids) [3] [22] [5]. These reports have been conducted recently, with the most recent literature search identifying scientific papers published up to April 2019 in the *Non-nicotine liquids for e-cigarette devices in Australia: chemistry and health concerns* report [5]. ## **Objectives** Given the wide range of non-nicotine substances potentially inhaled and reported gaps in the research, this report will consist of two components: - 1. A summary of the toxicological risk assessments of each chemical currently known to be used in e-cigarettes. - 2. A scoping review to ascertain the extent, range, and nature of the evidence available on toxicology associated with the inhalation of e-liquids. For the first component, the primary objective is to examine the toxicological risk assessments and identify the health risks of chemicals known to be currently used in e-cigarettes and secondly to identify if any of the known chemicals are permitted to be used (in Australia) for consumption via food and/or medicine and whether they have been assessed for inhalation toxicity. For the second component the objective of the scoping review is to examine the extent (that is, size), range (variety), and characteristics of the evidence published since 2019 on the inhalation toxicity of e-liquids used in electronic nicotine delivery systems and electronic non-nicotine delivery systems and highlight key research gaps. ## **Toxicology assessment** ## **Background and objectives** Numerous international agencies undertake toxicological risk assessments or chemical evaluations to identify potential health and environmental risks of a variety of chemicals. Agenices include: the Australian Industrial Chemicals Information Scheme, the European Chemicals Agency, the National Institute of Technology and Evaluation (Japan) and the United States Environmental Protection Agency. These assessments provide information and recommendations about to how manage the risks of chemicals and may be used to inform policies and regulations around permitted use of these substances. Recent reports have found over 200 unique ingredients (constituents) used in e-liquids [5] [6] [3]. These reports indicate that a number of the known chemicals currently used in e-liquids are also used for other purposes, such as in food processing, medicines and in the manufacture of other consumer goods. These chemicals have most likely undergone toxicological risk assessments. However, these risk assessments may not be comprehensive and risks to health via inhalation is commonly not addressed in food or medicine assessments [7] [8]. The primary objective is to examine the toxicological risk assessments and identify the health risks of chemicals known to be currently used in e-cigarettes and secondly to identify if any of the known chemicals are permitted to be used (in Australia) for consumption via food and/or medicine and whether they have been assessed for inhalation toxicity. #### **Methods** The 2019 AICIS report on non-nicotine liquids for e-cigarette devices [5] was used to identify chemicals that are currently known to be used in e-cigarettes. Chemical names were extracted into Microsoft Excel (2016; United States of America). For each chemical, one author (BC) identified and extracted the Chemical Abstract Service (CAS) Registry Number using the AICIS Industrial Chemicals Inventory online database (https://www.industrialchemicals.gov. au/search-inventory). Chemical names and associated CAS numbers were run through the Evaluation Prioritisation Tool (EPT) developed by AICIS. The EPT can scan and extract toxicology assessment data across the AICIS database (https://www.industrialchemicals.gov.au/chemical-information/search-assessments) and
equivalent international regulatory agency databases (Appendix A). For the identified chemicals currently known to be in e-cigarettes, the EPT scanned chemical name and CAS number and collated the following information: - permitted use(s) in Australia as an industrial chemical (including restrictions or bans) - international permitted uses (including where a chemical may be banned or have restricted uses) - alternate chemical name(s) - chemical family, AICIS assessments (references to assessment) - international assessments (references to assessment) - existing classification in Australia (health risk(s), including suspected health risk(s)) - international classification (health risk(s), including suspected health risk(s)) - endocrine disruption concerns. The EPT dataset did not distinguish where data on a chemical was not available because a toxicological assessment had not been completed or due to the chemical not being identified as a hazard/risk to health. Cross-referencing of EPT data with Globally Harmonized System of Classification and Labelling of Chemicals (GHS) classification data from the latest Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) reports indicate that that for most of the chemicals examined (n=349/369) there is no data available on repeat dose inhalation toxicity. As such, the authors have assumed that unavailable data from the EPT dataset is unlikely to represent that the chemicals identified are not a hazard or risk if inhaled. For reporting accuracy, a dash "-" was used to report where information was not available from the EPT dataset. Where data was available, data on health risks were extracted from the EPT and imported into Microsoft Excel. Two authors (BC, MC) independently extracted a sample of the data (n=10 chemicals). The extracts were then reviewed and compared. There was 83% agreement between the authors; discrepancies were resolved through consensus. When extracting the health concerns, the information was only pulled from national and international assessments and classifications, and endocrine disruption concerns that had been finalised, those still in draft or under review were excluded. When the Australian Classification was missing, but the chemical referred to the *Non-nicotine liquids for e-cigarette devices in Australia: chemistry and health concerns* report [5], the report was searched for any relevant health information to include in the spreadsheet. All health concerns were captured, those that were 'suspected' or 'potential' health concerns were recorded. Additional analysis, such as Quantitative Structure Activity Relationship (QSAR), was not within the scope of this report. To determine if the identified chemicals are permitted for use in food and medicines in Australia, the chemical names were cross-checked by one author (TC) with entries in Food Standards Australia New Zealand's (FSANZ) *Schedule 15 - Substances that may be used as food additive* of the Australia New Zealand Foods Standards Code [9] and TGA's *Australian Register of Therapeutic Goods and Permissible Ingredients* [10]. If an exact chemical name match could not be identified, alternate chemical names for the same chemical were cross-checked. Indirect matches (those with a similar chemical name but did not match word-for-word) were reviewed by a second author (LA). Discrepancies between the two authors were reviewed and a final decision made by a third author (MC). Permitted uses were recorded using Microsoft Excel. Toxicology assessment data and permitted uses were analysed using descriptive statistics. #### Results There were 369 chemicals identified as currently being used in e-cigarettes or in e-liquids according to the National Industrial Chemical Notification and Assessment Scheme (NICNAS) 2019 report. The toxicology assessments were reviewed for each of the identified chemicals. A large proportion of chemicals examined did not have toxicological assessment data available on inhalation toxicity (88.6%; n=327/369). As seen in **Figure 1**, of the chemicals that had data available, 42 were assessed to be harmful to inhale and 8 assessed as being a respiratory sensitiser (n=1) or suspected respiratory sensitiser (n=7), in addition to being associated with other health risks or suspected health risks. Approximately one third of the chemicals (n=116) had no toxicological assessment data available on health risks or suspected health risks. Figure 1: Summary of health risks of 369 chemicals based on data from toxicological assessments *Includes suspected respiratory sensitisers. **Includes suspected health risks. Based on the toxicological assessments, 68.5% (n=253/369) of chemicals examined were associated with at least one or more health risk or suspected health risk, including known or suspected acute toxicity (n=39), known or suspected carcinogen (n=82), known or suspected skin irritant (n=53), known or suspected skin sensitiser (n=114), and known to be harmful if swallowed (including fatal if swallowed; n=57). A detailed summary of health risks (including suspected health risks) for each chemical can be found at **Appendix C**. The toxicological assessments had several variations of 'harmful to inhale'. Of the 42 chemicals known to be harmful to inhale, 11 were classified as 'fatal if inhaled', 9 classified as 'may be fatal if inhaled', 3 classified as 'causes irreversible lung damage' when inhaled and 2 classified as 'causes damage to organs through prolonged or repeated exposure' via inhalation (**Figure 2**). Figure 2: Detailed classification of chemicals known to be harmful to inhale Of the 369 chemicals examined, 22 were identified as permitted to be used in food in Australia by FSANZ and 36 were classed as permissible ingredients for use in medicine by TGA (**Appendix C**). For the chemicals permitted to be used in food in Australia, 77.7% (n=16/22) were associated with at least one health risk or suspected health risk. Based on toxicological assessments, benzyl alcohol (CAS number: 100-51-6) is harmful to inhale, harmful if swallowed, a suspected respiratory sensitiser, causes eye irritation and causes acute toxicity, despite being permitted for use in food. No other chemicals permitted for use in food by FSANZ were found to be harmful to inhale. Four chemicals classed as permissible ingredients for use in medicine by TGA where found to be harmful to inhale: acetoin, acetylpropionyl (2,3-Pentanedione), arsenic and alpha-pinene. Overall, 75% (n=27/36) of chemicals classed as permissible ingredients for use in medicine by TGA were associated with health risks or suspected health risks (**Appendix C**). #### **Discussion** According to toxicological assessment data, the majority of ingredients (chemicals) known to be used in e-cigarettes were associated with at least one or more health risk or suspected health risk (68.5%; n=253/369). There is a small group with identified respiratory hazards where this known hazard is not relevant to e-cigarettes. This applies to substances such as alpha-pinene, beta-pinene, ethylbenzene, toluene, n-hexane, cyclohexane, xylene, which are classified under the Globally Harmonized System of Classification and Labelling of Chemicals (GHS) as aspiration hazards [23]. For these, if the liquid is swallowed, its low viscosity and high vapour pressure leads to stomach contents being regurgitated and potentially inhaled [23]. This is not a relevant scenario for e-cigarette liquids in their normal use. A large proportion of chemicals examined did not have toxicological assessment data available on inhalation toxicity (88.6%; n=327/369). A limitation of this research is that the authors assumed that unavailable data from the EPT dataset is unlikely to represent that the chemicals identified are not a hazard or risk if inhaled. That said, this assumption was informed by cross-referencing the EPT dataset with GHS classification data from the latest REACH reports. Classification data from the REACH reports indicated that that for most of the chemicals examined (n=349/369) there is no data available on repeat dose inhalation toxicity. It is important to note that absence of toxicological assessment data does not mean that chemicals are free of harm, but an indication where further information is required to make an assessment. Toxicological assessment data has an important role in identifying potential risks and suggesting mitigation strategies, such as dosage or concentrations in which a chemical can be safely consumed and identifying appropriate uses and handling for chemicals [13]. Whilst toxicological data was available for some of the chemicals, the comprehensiveness of this data, particularly for inhalation toxicity is unclear as chemicals have not been assessed for this use (inhalation), but for other uses such as the manufacture of other consumer goods and ingestion as a component of food or medicine [14]. The concern with these chemicals being used in e-cigarettes is that e-liquid composition is unregulated and although some chemicals are permitted to be used in foods, medicines or fragrances, they may not be suitable for use in e-cigarettes [24] [3] [25]. Of the chemicals known to be used in e-cigarettes, we identified 1 chemical permitted to be used in food in Australia by FSANZ and 4 chemicals classed as a permissible ingredients for use in medicine by TGA that are considered harmful to inhale. This is important to consider given the current use of these chemicals in e-liquids and that these chemicals are inhaled via e-cigarettes. Although toxicological assessment data provides an indication of potential harms of the use of these constituents in e-cigarettes, a limitation of this type of data is that it assesses health risks on an individual chemical basis. E-liquids used in e-cigarettes are a mixture of many chemicals from flavours, to solvents and humectants [5] [6] [3]. Reactions between ingredients can occur, leading to
the formation of other chemicals, such as aldehydes [26] [27] [28]. Recent reports [5] [19] have highlighted the complexities in trying to ascertain the health implications of inhaling e-liquids. Complexities include that e-liquids vary in constituent composition, vary in dosage and concentration of these constituents, the composition of e-liquids does not necessarily equate to the reaction products found in emissions, and how chemicals are heated and delivered through e-cigarette devices varies and has changed since the conception of e-cigarettes [3] [5] [22]. Emissions from e-cigarette devices contain carbonyl compounds formed as reaction products of the e-cigarette liquid used [5] [3] [22]. E-cigarette emissions also contain contaminants mostly derived from the e-cigarette liquid but also from the device. The contaminants identified are metals, volatile organic compounds, phthalates, pesticides and tobacco-specific nitrosamines [5]. A limitation of this report is that it examined chemicals identified in the NICNAS 2019 report. Although there is some overlap with the chemicals from the NICNAS 2019 report and those identified by the Scientific Committee on Health, Environmental and Emerging Risks (SHEER), neither report is an exhaustive list of all chemicals used in e-cigarettes on a global scale. The use of secondary data from toxicological assessments is not without its limitations. Although risk assessments are reviewed regularly, evidence used to inform the current risk assessments may be out-of-date at the time of this project or have changed since data extraction was conducted. Additionally, criteria to determine what a health risk is may vary depending on the regulatory body undertaking the assessment. There were large gaps in the available data and for some chemicals the available data was not comprehensive, particularly for inhalation toxicity. It is important to note that the absence of data does not necessarily equal the absence of hazard. That said, risk assessments typically consider information from many national and international sources, including studies commissioned by industry, information from other regulatory bodies, general scientific literature and grey literature [14] [29]. #### **Conclusion** In line with other published literature this report found that, where data was available, the majority of chemicals currently known to be used in e-cigarettes are associated with health risks, based on toxicological assessments. A large proportion of chemicals examined did not have toxicological assessment data available on inhalation toxicity and it cannot be concluded that absence of toxicological assessment data equates to absence of harm. Although some of the chemicals were identified to be permitted for use in food and medicine in Australia, a number were found to be harmful when inhaled. This is important to consider given the current use of these chemicals in e-cigarettes. ## **Scoping review** ### **Background and objectives** The liquids in e-cigarettes are commonly made by combining flavouring chemical mixtures in a solvent mixture [2]. These e-liquids can contain nicotine, even if labelled "nicotine free" [18] [17] [16], and have been reported to also contain flavourings and harmful substances such as heavy metals, volatile organic compounds and cancer-causing chemicals [3] [4]. Recent reports have found over 200 unique ingredients (constituents) used in e-liquids [5] [6] [3]. In a recent report [19], the World Health Organization identified gaps in the research base regarding the toxicants of HTPs, including e-cigarettes, and the effects on humans. These gaps include the need for more rigorous assessments of HTP emissions, including how they are absorbed in cells, harmful exposures and impact on health outcomes [19]. In Australia, there is limited publicly available information on the composition of e-liquids. These ingredients however are of interest due to concerns around chemical exposure, with many of the constituents (chemicals) posing harm to human health in certain situations [5]. Several reports and reviews have examined toxicity of e-cigarettes (e-liquids) [3] [22] [5]. These reports have been conducted recently, with the most recent literature search identifying scientific papers published up to April 2019 in the *Non-nicotine liquids for e-cigarette devices in Australia: chemistry and health concerns* report [5]. The objective of the scoping review is to examine the extent (that is, size), range (variety) and characteristics of the evidence published since April 2019 on the inhalation toxicity of e-liquids used in electronic nicotine delivery systems and electronic non-nicotine delivery systems and highlight key research gaps. #### **Methods** The scoping review was conducted according to the Joanna-Briggs Institute guidelines [11] and reported in accordance with the PRISMA extension for Scoping Reviews [12]. The scoping review protocol was published on FigShare [https://figshare.com/articles/journal_contribution/NHMRC_E-cigarette_toxicology_scoping_review_protocol_pdf/18131045]. #### **Research question** Since April 2019, what evidence is available on the inhalation toxicity of e-liquids (chemical constituents) currently known to be used in ENDS or ENNDS? #### Specifically; - 1. extent: number of studies in total and for each outcome of interest - 2. range: type of study designs in total and for each outcome - 3. characteristics: research questions addressed by studies. #### Eligibility criteria #### **Population** All human populations were included regardless of age, sex, gender, ethnicity or other characteristic. Priority sub-groups included in the scoping review were as follows: non-smoking populations (never-smokers of e-cigarettes or combustible tobacco products), children and youth, Aboriginal and Torres Strait Islander communities and current smokers (e-cigarette users, users of traditional combustible tobacco products and dual users). #### **Exposure** The following exposures were included as a part of the scoping review: - e-liquids delivered in the form used in an ENDS/ENNDS (i.e. the combination of chemicals in an e-liquid, such as pineapple flavour, which will include a combination of the base ingredient/vehicle and multiple chemicals used to flavour) - · e-aerosols and emissions - inhalation of individual chemicals or by-products including: - individual chemical constituents of e-liquids (e.g. specific base ingredients/vehicles such as propylene glycol, glycerol; specific chemicals used in flavouring such as Vanillin, Geranyl butyrate) - by-products of heating the e-liquid (e.g. formaldehyde) - aerosols (particulates) - contaminants such as metals. The following exposures were excluded from the scoping review: - e-liquids delivered in the form used in heated tobacco products - · second- or third-hand exposure (passive exposure) to e-liquids or individual chemicals - cannabis and tetrahydrocannabinol. #### **Comparators** The following comparators were included as a part of the scoping review: - exposure versus no exposure - · e-liquids with nicotine versus without nicotine - different concentrations of individual chemicals and/or e-liquids. #### **Outcomes** As per the protocol, the following outcomes were included from the scoping review: - toxicity (including acute toxicity) - respiratory sensitisation - adverse physiological or biological effects, including poisonings, allergic reactions, biomarkers and surrogate outcomes - outcome measurement methods: determined as a part of the scoping review process. As per the protocol, the following outcomes were excluded from the scoping review: - knowledge, attitudes, behaviours and perceptions regarding ENDS/ENNDS - uptake of ENDS/ENNDS - roles of ENDS/ENNDS in cessation of traditional combustible cigarettes - chronic health outcomes such as cardiovascular disease, cancer, chronic lung disease - toxicant identification and quantification without any examination of toxicity. #### **Types of studies** Several reports and reviews have examined toxicity of e-cigarettes (e-liquids) [3] [22] [5]. These reports have been conducted recently, with the most recent literature search identifying scientific papers published up to April 2019 in the *Non-nicotine liquids for e-cigarette devices in Australia: chemistry and health concerns* report [5]. As such the following peer-reviewed literature published from April 2019 was included in the scoping review. The following study types were included as a part of the scoping review: - randomised controlled trials (including individual, cluster and cross-over trials) - non-randomised trials - · Mendelian randomisation studies - · prospective cohort studies - retrospective cohort studies and nested case control studies. Other study designs that were considered included uncontrolled trials, cross-sectional studies, case control studies, before-and-after studies, *in vitro* studies and systematic reviews. In line with the protocol, animal and in vitro studies were included as studies in humans were limited. The included animal studies were those that had a control group. *In vitro* studies with human cell-lines and animal cell lines were included. The following study types were excluded from the scoping review: Literature review, case series, case studies, conference papers, editorials (opinion pieces), modelling studies, letters, commentary papers and study protocols were not considered. Animal studies without a control group were not considered. Due to time constraints, studies published in languages other than English were also not considered. Literature published prior to April 2019 was not included in this review as it was captured in a number of previously published reviews. #### Search methods A sample search strategy can be found at **Appendix B**. The search strategy was run through Cochrane Central, MEDLINE (via Ovid), Embase (via Ovid), PsycInfo and CINAHL on 20th July
2021. Only papers published after April 2019 were reviewed. No further supplementary searches (such as searching reference lists) were conducted. Search results were managed using EndNote (X9.2; United States of America) referencing software. #### **Data screening** Titles and abstracts of a sample of studies (n=10 studies) were independently screened by two authors (BC, MC) for inclusion. Screened studies were reviewed and compared. There was 60% agreement between the two authors; discrepancies were resolved through consensus. The remaining included studies were screened by one author (MC) using Rayyan (2016) [30]. The results of the search and screening process are presented in a PRISMA flow diagram (**Figure 3**). #### Data extraction, categorisation and coding After studies had been selected for full-text review, two authors (BC, MC) independently extracted the following data from a sample of included studies (n=10 studies) in Microsoft Excel: - study reference (title, authors, journal, year) - study type based on labels used in the primary studies (e.g. experimental, cohort) - randomised controlled trials in humans were classified separately to experimental studies - experimental studies included animal-based, cell-based (in vitro), biochemical, and mixed methods (combination of animal and/or cell and/or biochemical) - exposures (e.g. e-liquids, individual chemicals) - comparators (e.g. exposure vs. no exposure) - outcome of interests (e.g. respiratory sensitisation, acute toxicity via inhalation) - modifying factors (where data was available; e.g. type of device, frequency and duration of use). Data extracted from studies was reviewed and compared, discrepancies were resolved through consensus. The process was completed to refine the extraction process, develop guidance and ensure consistent extraction of data. The remaining included studies were extracted by one author (MC) in to Microsoft Excel. We planned to include any toxicity outcome. For the review, all outcomes, including type of toxicity were extracted and reported verbatim from included studies by one author (MC): - cardiorespiratory toxicity - cardiorespiratory toxicity - cytotoxicity - genotoxicity - developmental toxicity - embryotoxicity - angiogenesis - carcinogenic potential - neurotoxicity - pulmonary function and toxicity - reproductive toxicity - toxicant identification and quantification - · vascular function - acute toxicity. Where no specific type of toxicity was reported in an included study, the outcome was categorised as 'general toxicity'. Exposure categories were extracted and reported verbatim from individual studies by one author (MC). It was evident from the data extracted that exposures could be further grouped in to high-level exposure categories, determined by consistent themes appearing in the data. One author (MC) coded the exposures into the following high-level exposure categories: e-aerosol, e-cigarette cartridge/re-fill, e-cigarette extract, e-cigarette vapour, e-cigarettes, e-hookah, e-liquid, ENDS, ENDS and ENNDS, and individual chemical constituents. During the data extraction process it was identified that the population groups and exposure types of included studies varied substantially. Consequently outcome measures were not extracted as they were unlikely to be of benefit to the review. #### **Data synthesis** A risk of bias assessment was not conducted. Data was analysed using descriptive statistics. A characteristics of studies table was developed (**Appendix E**) as well as an evidence map examining the number of studies by exposure (all levels of coding) and outcome type (verbatim coding of outcomes) (**Figure 5**). #### **Results** The searches of the five bibliographic databases identified 1221 records, of which 479 were removed as they were identified as a duplicate (n=462), in a language other than English (n=16) or not published within the specified time period (n=1). A total of 742 articles were screened and assessed for inclusion. After excluding studies for study design (n=109), outcome type (n=421) or exposure type (n=123) (**Appendix D**), 89 remained and were included in the review (**Figure 3**). Figure 3: PRISMA Flow Diagram As seen in **Figure 4**, the majority of the studies included were experimental studies (65.2%; n=58/89 excluding randomised trials involving humans). However, the type of experimental studies varied. Excluding experimental mixed-method designs (n=5), the majority of the experimental studies were cell-based studies (73.6%; n=39/53), followed by animal-based studies (26.4%; n=14/53). Systematic reviews made up 19.1% of studies included (n=17/89). Seven prospective cohort studies and five randomised control trials were included. Only one clinical trial and one cross-sectional study were included. Figure 4: Distribution of included papers by study type Studies were highly variable in terms of both study design and the PECO questions addressed. Variability was observed for outcome of interest, exposure, study population (including animal and cell type) and methodology. As seen in **Figure 5**, it was common for studies not to specify whether the exposure (e.g. e-cigarette, e-aerosol, e-liquid) was a commercial device or e-liquid, whether it was a specific flavour or whether or not it contained nicotine. Most studies examined e-liquids or e-aerosols as a whole rather than the toxicological impacts of individual chemicals (**Figure 5**). Cytotoxicity was the most common outcome of interest examined across all 89 studies (Figure 5). Majority of the studies examining cytotoxicity were mainly cell-based experimental studies (n=21). General toxicity was the second most common outcome of interest (n=16), followed by pulmonary toxicity (n=6) and cardiotoxicity (n=6). A number of studies found evidence that toxicity was related to oxidative stress or endothelial cell dysfunction (Appendix E). Outcome and exposure types examined varied by study population. For example, e-cigarettes (unspecified nicotine content, device types or flavour) was the most commonly examined exposure in studies with a human population group (excluding systematic reviews). This was in contrast to experimental cell-based and animal studies, where e-cigarettes was the least common exposure examined. E-aerosols (n=13/39), e-liquids (n=12/39) and individual constituents (n=7/39) were the most common exposures examined in experimental cell-based studies (Appendix E). Half of the animal studies (n=7/14) examined e-aerosols or e-vapour as the exposure type. Other than 1 systematic review, developmental toxicity was exclusively examined by animal-based experimental studies. Typical outcomes examined by studies with a human population included cardiotoxicity, pulmonary toxicity or changes in biomarkers of exposure (Appendix E). | | | E-aerosol — condensate E-aerosol — flavoured | | | | | | | | 1 | | | | 2 | 1 | | | | | | | | | | | | | |------|----------------------------------|--|---|--|------------------------|----------------------------|--|----------------|---|--------------|----------------------------|------------------------|------------------------------|------------------|--------------|--------------------------------------|----------------------------|---------------|--------------------|--------------------|----------------------|-----------------------|--|--|--|--|---| | | | E-aerosol — flavoured; E-aerosol — third generation device | | | | | | | | 1 | E-aerosol — fourth generation device | | | | | | | | 1 | E-aerosol | E-aerosol — third generation device | | | | | | | | 1 | E-aerosol — vitamin E acetate | | | | | | | | | | | | | | | | | | | 1 | | | | | | | | | | E-aerosol (unspecified) | | | 1 | | | | | 4 | | 1 | | 2 | 1 | | | | | | 1 | | 1 | | | | | | | | E-aerosols containing nicotine and flavour | | | | 1 | E-cigarette cartridge/re-fill | E-cigarette cartridge/re-fill | | | | | | | | 2 | | | | 2 | | | | | | | | | | | | | | | | E-cigarette extract | E-cigarette extract | | | | | | 1 | E simonatta vanasuu | E-cigarette vapour | | | | | | | | | | 3 | | 2 | | | | 1 | | 1 | | 1 | | | 1 | | | | | E-cigarette vapour | E-cigarette vapour (nicotine); E-cigarette vapour (nicotine-free) | | | | | | | | 1 | E simountton | E-cigarettes — 50% propylene glycol; 50% vegetable glycerin | | | | | 1 | 1 | E-cigarettes | E-cigarettes (unspecified) | 2 | 1 | 1 | 2 | | 2 | 3 | | | | | 5 | | | | | 1 | | | | | | | | | | | E hardesh | E-hookah — vapour | | | | | | | | | | | | 1 | | | | | | | | | | | | | | | | E-hookah | E-hookah (unspecified) | | | | | | | | 1 | | | | | | | | | | | | | | | | | | | bs | | E-liquid — flavoured | | | | | | | | 3 | | | 1 | | 1 | | 1 | | | | 2 | | | | | | | | Lonl | | E-liquid — flavoured; e-concentrate (flavoured) | 1 | | | | | | re g | E-liquid | E-liquid — flavoured; E-liquid — base | | | | | | | | 1 | | | | | | | | | | | | | | | | | | | osar | | E-liquid (nicotine); E-liquid (nicotine-free) | | | | | | | | | 1 | | | | | | | | |
 | | | | | | | | Ä | | E-liquid (unspecified) | | | | | | | | 1 | | 1 | | | | | | | | | | | 1 | | | | | | | | E-liquid (unspecified); E-aerosol (unspecified) | | | | | | | | | | | | 2 | | | | | | | | | | | | | | | | ENDS | ENDS — flavoured | | | | | | 1 | ENDS (unspecified) | | | | | | | | 2 | | | | | | | | | | | 1 | | | | | | | | | ENDS; ENNDS | ENDS (unspecified); ENNDS (unspecified) | 1 | | | | Individual chemical constituents (unspecified) | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | | Individual constituents — benzaldehyde, vanillin, ethyl vanillin, and their corresponding propylene glycol acetyls | | | | | | | | 1 | Individual constituents — cinnamaldehyde | | | | | | 1 | Individual constituents — diacetyl | | | | | | | | 1 | Individual constituents — diacetyl; 2,3-pentanedione | | | | | | | | 1 | Individual chemical constituents | Individual constituents — formaldehyde; acrolein | 1 | | | | | | | Constituents | Individual constituents — menthol | | | | | | | | 1 | Individual constituents — metal/metalloid | 1 | | | | | | | Individual constituents — propylene glycol; glycerol | | | | | | | | 1 | | 1 | 1 | | | | | Individual constituents — propylene glycol; glycerol; E-cigarette cartridge/re-fill | 1 | | | | | - | | | | | E-cigarette cartridge/re-fill | Biomarkers of exposure among dual users | Biomarkers of exposure to tobacco-related toxicants in e-cig users | Carcinogenic potential | Cardiorespiratory toxicity | Cardiorespiratory toxicity; Pulmonary toxicity | Cardiotoxicity | Changes to levels of tobacco-
related biomarkers when
switching to e-cigarettes | Cytotoxicity | Cytotoxicity; Genotoxicity | Developmental toxicity | Embryotoxicity; Angiogenesis | General toxicity | Genotoxicity | Genotoxicity; Carcinogenic potential | Genotoxicity; Cytotoxicity | Neurotoxicity | Oral health impact | Pulmonary function | 1 Pulmonary toxicity | Reproductive toxicity | Toxicant identification & quantification | Toxicant identification & quantification; Biomarkers of exposure to tobacco-related toxicants in e-cig users | Toxicant identification & quantification; Cytotoxicity | Toxicant identification & quantification; General toxicity | Vascular function; Acute toxicity; Pulmonary function | Figure 5: Evidence map of number of studies by exposure and outcome type #### **Discussion** The majority of the included studies examined e-cigarettes or e-liquids as a whole rather than specific ingredients (constituents) (12 of 89 studies examined individual constituents). The evidence on the differential health impacts of a specific flavour, solvent, humectants or nicotine-containing or nicotine-free e-cigarettes or e-liquids could not be determined from the included studies (**Figure 5**). Only a few studies compared toxicant emissions or biomarkers of non-nicotine containing e-cigarettes to nicotine-containing e-cigarettes or combustible tobacco cigarettes. Long-term data on inhalation toxicity of e-cigarettes (both nicotine-containing and non-nicotine-containing) remain limited. Considerable variability in the outcomes of interest, population, exposure, study design and methodology was identified through the scoping review. E-cigarettes (unspecified nicotine content, device types or flavour) was the most commonly examined exposure in studies with a human population group (excluding systematic reviews). This was in contrast to experimental cell-based and animal studies, where e-cigarettes was the least common exposure examined. E-aerosols, e-liquids and individual constituents were the most common exposures examined in experimental cell-based studies (Appendix E). Other than 1 systematic review, developmental toxicity was exclusively examined by animal-based experimental studies. Typical outcomes examined by studies with a human population included cardiotoxicity, pulmonary toxicity or changes in biomarkers of exposure (Appendix E). The variability in the outcomes of interest, population, exposure, study design and methodology makes it difficult to get clear, consistent evidence on the toxicology of e-cigarettes and potential harms to users. Standardised methods for toxicant identification and quantification should be strongly encouraged and used, especially for experimental designs. Specific to e-cigarettes, in addition to using existing guidance on inhalation toxicity [31], standard protocols which include guidance on device type, base liquid, concentration, coil/heating temperature and puff size is needed. Standardised methodologies will aid in the future synthesis of evidence and examination of the potential inhalation toxicity of e-cigarettes. It is important to note that due to the information collated and the methodological approach taken, no statement on the health risks of chemicals currently known to be used in e-cigarettes can be made. Time and resource constraints meant it was not feasible to conduct a systematic review of all identified e-liquid constituents. Additionally, a risk of bias assessment was not undertaken. Quality of studies remain unclear at this stage and key findings identified should be interpreted carefully. #### **Conclusion** Considerable variability in the outcomes of interest, exposure, study design and methodology was identified through the scoping review. Further research is required. Standardised methods for evaluating e-liquids are required, including specifications on device type, base liquid, concentration, coil/heating temperature and puff size. Such standardisation would the many complexities of assessing toxicological health risks of inhaling non-nicotine e-cigarette constituents. ## **Discussion and conclusions** According to toxicological assessment data, the majority of ingredients (chemicals) known to be used in e-cigarettes were associated with at least one or more health risk or suspected health risk (68.5%; n=253/369). For example, diacetyl and acetylpropionylare known to cause irreversible lung damage following repeated inhalation exposure and have carcinogenic potential [32]. Diacetyl and acetylpropionyl are found in both e-cigarettes and tobacco cigarettes in different concentrations. Diacetyl and acetylpropionyl, are prohibited ingredients in nicotine vaping products in Australia [33]. However, they are likely to be widely used in non-nicotine e-cigarette products across Australia [32]. There is a small group of chemicals with identified respiratory hazards where this known hazard is not relevant to e-cigarettes. This applies to substances such as alpha-pinene, beta-pinene, ethylbenzene, toluene, n-hexane, cyclohexane, xylene, which are classified under GHS as aspiration hazards [23]. For these, if the liquid is swallowed, its low viscosity and high vapour pressure leads to stomach contents being regurgitated and potentially inhaled [23]. This is not a relevant scenario for e-cigarette liquids in their normal use. A large proportion of chemicals examined did not have toxicological assessment data available on inhalation toxicity (88.6%; n=327/369). A limitation of this research is that the authors assumed that unavailable data from the EPT dataset is unlikely to represent that the chemicals identified are not a hazard or risk if inhaled. That said, this assumption was informed by cross-referencing the EPT dataset with GHS classification data from the latest REACH reports. Classification data from the REACH reports indicated that that for most of the chemicals examined (n=349/369) there is no data available on repeat dose inhalation toxicity. It is important to note that absence of toxicological assessment data does not mean that chemicals are free of harm, but an indication where further information is required to make an assessment. Toxicology assessment data has an important role in identifying potential risks and suggesting mitigation strategies, such as dosage or concentrations in which a chemical can be safely consumed and identifying appropriate uses and handling for chemicals [13]. Whilst toxicological data was available for some of the chemicals, the comprehensiveness of this data, particularly for inhalation toxicity is unclear. Chemicals have not been assessed for inhalation, but for other uses such as the manufacture of other consumer goods and ingestion as a component of food or medicine [14]. E-liquid composition is currenlty unregulated and although some chemicals are permitted to be used in foods, medicines or fragrances, they may not be suitable for use in e-cigarettes [24] [3] [25]. Of the chemicals known to be used in e-cigarettes, we identified 1 chemical permitted to be used in food in Australia by FSANZ and 4 chemicals classed as permissible ingredients for use in medicine by TGA that are considered harmful to inhale. Although toxicological assessment data provides an indication of potential harms of the use of these constituents in e-cigarettes, a limitation of this type of data is that it assesses health risks on an individual chemical basis. E-liquids used in e-cigarettes are a mixture of many chemicals including; flavours, solvents and humectants [5] [6] [3]. Reactions between ingredients can occur leading to the formation of other chemicals, such as aldehydes [26] [27] [28]. Recent reports [5] [19] have highlighted the complexities in trying to ascertain the health implications of inhaling e-liquids. Complexities include that e-liquids vary in constituent composition, dosage and
concentration of these constituents. The composition of e-liquids does not necessarily equate to the reaction products found in emissions. How chemicals are heated and delivered through e-cigarette devices varies and has changed since the conception of e-cigarettes [3] [5] [22]. Emissions from e-cigarette devices contain carbonyl compounds formed as reaction products of the e-cigarette liquid used [5] [3] [22]. E-cigarette emissions also contain contaminants mostly derived from the e-cigarette liquid but also from the device. The contaminants identified are metals, volatile organic compounds, phthalates, pesticides and tobacco-specific nitrosamines [5]. E-cigarette use increases airborne particulate matter in indoor environments [34], meaning that individuals may passively inhale e-cigarette emissions. Passive exposure was not within scope of this study, however, the World Health Organisation has warned that exposure to any level of particulate matter may be harmful and that levels of exposure should be minimised [35]. The vast majority of the included studies in the scoping review examined e-cigarettes or e-liquids as a whole rather than specific ingredients (constituents) (12 of 89 studies examined individual constituents). The evidence on the differential health impacts of a specific flavour, solvent, humectants or nicotine-containing or nicotine-free e-cigarettes or e-liquids could not be determined (**Figure 5**). Only a few studies compared toxicant emissions or biomarkers of non-nicotine containing e-cigarettes to nicotine-containing e-cigarettes or combustible tobacco cigarettes. Long-term data on inhalation toxicity of e-cigarettes (both nicotine-containing and non-nicotine-containing) remain limited. Considerable variability in the outcomes of interest, population, exposure, study design and methodology was identified through the scoping review. E-cigarettes (unspecified nicotine content, device types or flavour) was the most commonly examined exposure in studies with a human population group (excluding systematic reviews). This was in contrast to experimental cell-based and animal studies, where e-cigarettes was the least common exposure examined. E-aerosols, e-liquids and individual constituents were the most common exposures examined in experimental cell-based studies (Appendix E). Other than 1 systematic review, developmental toxicity was exclusively examined by animal-based experimental studies. Typical outcomes examined by studies with a human population included cardiotoxicity, pulmonary toxicity or changes in biomarkers of exposure (Appendix E). The variability in the outcomes of interest, population, exposure, study design and methodology makes it difficult to get clear, consistent evidence on the toxicology of e-cigarettes and potential harms to users. Standardised methods for toxicant identification and quantification should be strongly encouraged and used, especially for experimental designs. Specific to e-cigarettes, in addition to using existing guidance on inhalation toxicity [31], standard protocols which include guidance on device type, base liquid, concentration, coil/heating temperature and puff size is needed. Standardised methodologies will aid in the future synthesis of evidence and examination of the potential inhalation toxicity of e-cigarettes. It is important to note that due to the information collated and the methodological approach taken (scoping review), no statement on the health risks of chemicals currently known to be used in e-cigarettes can be made. Time and resource constraints meant it was not feasible to conduct a systematic review of all identified e-liquid constituents. Additionally, a risk of bias assessment was not undertaken. Quality of studies remain unclear at this stage and key findings identified should be interpreted carefully. A limitation of this report is that it examined chemicals identified in the NICNAS 2019 report. Although there is some overlap with the chemicals from the NICNAS 2019 report and those identified by the Scientific Committee on Health, Environmental and Emerging Risks (SHEER), neither report is an exhaustive list of all chemicals used in e-cigarettes on a global scale. The use of secondary data from toxicological assessments is not without its limitations. Although risk assessments are reviewed regularly, evidence used to inform the current risk assessments may be out-of-date at the time of this project or have changed since data extraction was conducted. Additionally, criteria to determine what a health risk is may vary depending on the regulatory body undertaking the assessment. There were large gaps in the available data and for some chemicals the available data was not comprehensive, particularly for inhalation toxicity. It is important to note that the absence of data does not necessarily equal the absence of hazard. Risk assessments typically consider information from many national and international sources. including studies commissioned by industry, information from other regulatory bodies, general scientific literature and grey literature [14] [29]. Combining a scoping review with toxicological assessments provided a holistic overview of the current evidence base, identified important gaps in research including current inconsistencies and provided some considerations for manufacturers and regulatory bodies on current chemicals used in e-cigarettes. #### **Conclusion** In line with other published literature, this report found that the majority of chemicals currently known to be used in e-cigarettes are associated with health risks, based on toxicological assessments. A large proportion of chemicals examined did not have toxicological assessment data available on inhalation toxicity. It cannot be concluded that absence of toxicological assessment data equates to absence of harm. Although some of the chemicals were identified to be permitted for use in food and medicine in Australia, a number were found to be harmful when inhaled. This is important to consider given the current use of these chemicals in e-liquids and that these chemicals are inhaled via e-cigarettes. Considerable variability in the outcomes of interest, exposure, study design and methodology was identified through the scoping review. Further research is required. Standardised methods for evaluating e-liquids are required, including specifications on device type, base liquid, concentration, coil/heating temperature and puff size. Such standardisation would the many complexities of assessing toxicological health risks of inhaling non-nicotine e-cigarette constituents. ## References - [1] E. Greenhalgh and M. Scollo, In Depth 18B: Electronic cigarettes (e-cigarettes). Tobacco in Australia: facts and issues., Melbourne: Cancer Council Australia, 2018. - [2] Australian Government Department of Health, "Policy and regulatory approach to electronic cigarettes (e-cigarettes) in Australia," 28 November 2019. [Online]. Available: <a href="https://www.health.gov.au/sites/default/files/documents/2019/12/policy-and-regulatory-approach-to-electronic-cigarettes-e-cigarettes-in-australia-principles-that-underpin-the-current-policy-and-regulatory-approach-to-electronic-cigarettes-e-cigarettes-in-australia.pdf." - [3] National Academics of Sciences, Engineering, and Medicine, "Public Health Consequences of E-Cigarettes," The National Academic Press, Washington, DC, 2018. - [4] World Health Organization (WHO), "Electronic Nicotine Delivery Systems and Electronic," WHO Framework Convention on Tobacco Control, Geneva, 2016. - [5] National Industrial Chemicals Notification and Assessment Scheme, "Non-nicotine liquids for e-cigarette devices in Australia: chemistry and health concerns," 2 October 2019. [Online]. Available: <a href="https://www.industrialchemicals.gov.au/sites/default/files/2020-08/Non-nicotine%20liquids%20for%20e-cigarette%20devices%20in%20Australia%20chemistry%20and%20health%20concerns%20%5BPDF%201.21%20MB%5D.pdf. - [6] E. J. Z. Krusemann, A. Havermans, J. L. A. Pennings, K. de Graaf, S. Boesveldt and R. T. Talhout, "Comprehensive overview of common e-liquid ingredients and how they can be used to predict an e-liquid's flavour category," *Tobacco Control*, pp. 185-191, 2021. - [7] World Health Organization (WHO), "Environmental Health Criteria 240 "Principle and methods for the risk assessment of chemicals in food; Chapter 6 Dietary Exposure Assessment of Chemicals in Food"," [Online]. Available: https://www.who.int/ publications/i/item/9789241572408. [Accessed 12 January 2022]. - [8] United Nations, "Globally harmonized system of classification and labelling chemicals (GHS)," [Online]. Available: https://unece.org/DAM/trans/danger/publi/ghs/ghs_rev07/English/ST_SG_AC10_30_Rev7e.pdf. [Accessed 12 January 2022]. - [9] Food Standards Australia and New Zealand, "Australia New Zealand Food Standards Code Schedule 15 Substances that may be used as food additives," 7 September 2021. [Online]. Available: https://www.legislation.gov.au/Details/F2021C00607. - [10] Theapeutic Goods Administration, "Theapeutic Goods (Permissable Ingredients) Determination (No. 1) 2021," 7 September 2021. [Online]. Available: https://www.legislation.gov.au/Details/F2021L00157. - [11] M. Peters, C. Godfrey, P. McInerney, Z. Munn, A. Tricco and H. Khalil, "Chapter 11: Scoping Reviews (2020 version). In: Aromataris E, Munn Z (Editors), JBI Manaul for Evidence Synthesis, JBI, 2020". - [12] A. A. Tricco, E. Lillie, W. Zarin, K. K. O'Brien, H. Colquhoun, D. Levac, D. Moher, M. D. Peters, T. Horsley, L. Weeks, S. Hempel, E. A. Akl, C. Chang, J. McGowan, L. Stewart, L. Hartling, A. Aldcroft, M. G. Wilson, C. Garritty, S. Lewin, C. M. Godfrey, M. T. Macdonald, E. V. Langlois, K. Soares-Weiser, J.
Moriarty, T. Clifford, O. Tuncalp and S. E. Straus, "PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation," *Annals of Internal Medicine*, vol. 169, no. 7, pp. 467-473, 2018. - [13] Australian Industrial Chemicals Introduction Scheme, "Who are we and what do we do," 7 September 2021. [Online]. Available: https://www.industrialchemicals.gov.au/about-us/who-we-are-and-what-we-do. - [14] Australian Industrial Chemicals Introduction Scheme, "How and why we assess risk," [Online]. Available: https://www.industrialchemicals.gov.au/about-us/how-and-why-we-assess-risk. [Accessed 9 September 2021]. - [15] Australian Institute of Health and Welfare, "National Drug Strategy Household Survey 2019," 16 July 2020. [Online]. Available: https://www.aihw.gov.au/reports/illicit-use-of-drugs/national-drug-strategy-household-survey-2019/contents/summary. - [16] E. Omaiye, I. Cordova, B. Davis and P. Talbot, "Counterfeit Electronic Cigarette Products with Mislabeled Nicotine Concentrations," *Tob Regul Sci,* vol. 3, no. 3, pp. 347-357, 2017. - [17] B. Raymond, K. Collette-Merrill, R. Harrison, S. Jarvis and R. Rasmussen, "The Nicotine Content of a Sample of E-cigarette Liquid Manufactured in the United States," *J Addict Med,* vol. 12, no. 2, pp. 127-131, 2018. - [18] E. Chivers, M. Janka, P. Franklin, B. Mullins and A. Larcombe, "Nicotine and other potentially harmful compounds in "nicotine-free" e-cigarette liquids in Australia," *Med J Aust*, vol. 210, no. 3, pp. 127-128, 2019. - [19] WHO Study Group on Tobacco Product Regulation, "Report on the scientific basis of tobacco product regulation: eighth report of a WHO study group," 4 May 2021. [Online]. Available: https://www.who.int/publications/i/item/9789240022720. - [20] Therapeutic Goods Administration, "Nicotine vaping products: Information for pharmacists," 5 October 2021. [Online]. Available: https://www.tga.gov.au/nicotine-vaping-products-information-pharmacists. [Accessed 22 October 2021]. - [21] E. Chivers, M. Janka, P. Franklin, B. Mullins and A. Larcombe, "Nicotine and other potentially harmful compounds in "nicotine-free" e-cigarette liquids in Australia," *The Medical Journal of Australia*, pp. 127-128, 2019. - [22] Scientific Committee on Health, Environmental and Emerging Risks (SHEER), "Scientific Opinion on electronic cigarettes, 23 September 2020". - [23] Globally Harmonized System of Classification and Labelling of Chemicals (GHS), "Globally Harmonized System of Classification and Labelling of Chemicals (GHS) Seventh Edition," 2017. [Online]. Available: https://unece.org/ghs-rev7-2017. [Accessed 10 January 2022]. - [24] J. M. Bhatt, M. Ramphul and A. Bush, "An update on controversies in e-cigarettes," *Paediatric Respiratory Reviews,* vol. 36, pp. 75-86, 2020. - [25] A. Larcombe, S. Allard, P. Pringle, R. Mead-Hunter, N. Anderson and B. Mullins, "Chemical analysis of fresh and aged Australian e-cigarette liquids," *Medical Journal of Australia*, 2021. - [26] A. Khlystov and V. Samburova, "Flavoring Compounds Dominate Toxic Aldehyde Production during E-Cigarette Vaping," *Environmental Science and Technology*, vol. 50, pp. 13080-13085, 2016. - [27] S. Vreeke, D. H. Peyton and R. M. Strongin, "Triacetin Enhances Levels of Acrolein, Formaldehyde Hemiacetals, and Acetaldehyde in Electronic Cigarette Aerosols," *ACS Omega*, vol. 3, no. 7, pp. 7165-7170, 2018. - [28] H. C. Erythropel, S. V. Jabba, T. M. DeWinter, M. Mendizabal, P. T. Anastas, S. E. Jordt and J. B. Zimmerman, "Formation of flavorant-propylene glycol adducts with novel toxicological properties in chemically unstable e-cigarette liquids.," *Nicotine Tobacco Research*, vol. 21, no. 9, pp. 1248-1258, 2019. - [29] European Chemicals Agency (ECHA), "Guidance on Information Requirements and Chemical Safety Assessment," [Online]. Available: https://echa.europa.eu/guidance-documents/guidance-on-information-requirements-and-chemical-safety-assessment. [Accessed 9 September 2021]. - [30] M. Ouzzani, H. Hammady, Z. Fedorowicz and A. Elmagarmid, "Rayyan a web and mobile app for systematic reviews," 2016. [Online]. Available: https://rayyan.ai/. [Accessed 22 July 2021]. - [31] Organisation for Economic Co-operation and Development (OECD), "Guidance Document on Inhaltion Toxicity Studies: Series on Testing and Assessment (No.39; Second Edition)," OECD Environment, Health and Safety Publications, 2018. - [32] Australian Industrial Chemical Introduction Scheme, "Acetylpropionyl and diacetyl: Evaluation statement," Australia, 2022. - [33] Therapeutic Goods Administration, "icotine vaping products and vaping devices: Guidance for the Therapeutic Goods (Standard for Nicotine Vaping Products) (TGO 110) Order 2021 and related matters.," Australia, 2021. - [34] E. Banks, A. Yazidjoglou, S. Brown, M. Nguyen, M. Martin, K. Beckwith, A. Daluwatta, S. Campbell and G. Joshy, "Electronic cigarettes and health outcomes: systematic review of global evidence.," Australian National University, 2022. - [35] World Health Organisation, "WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide: global update 2005: summary of risk assessment," Occupational Environmental Health Team, 2006. - [36] Y. Akiyama and N. Sherwood, "Systematic review of biomarker findings from clinical studies of electronic cigarettes," *Toxicology Reports,* vol. 27, no. 8, pp. 282-294, 2021. - [37] H. Dai and A. S. Khan, "A Longitudinal Study of Exposure to Tobacco-Related Toxicants and Subsequent Respiratory Symptoms Among U.S. Adults with Varying E-Cigarette Use Status," *Nicotine Tobacco Research*, vol. 22, no. Supp1, pp. S61-S69, 2020. - [38] M. McEwan, N. Gale, J. Ebajemito, O. M. Camacho, G. Hardie, C. J. Proctor and J. Murphy, "A randomized controlled study in healthy participants to explore the exposure continuum when smokers switch to a tobacco heating product or e-cigarette relative to cessation," *Toxicology Report*, vol. 8, pp. 994-1001, 2021. ## **Appendices** NICNAS New Chemicals Assessment Data # Appendix A: National and international databases scanned by the AICIS Evaluation Prioritisation Tool Table 1: List of national and international databases scanned by the AICIS Evaluation Prioritisation Tool | List of national and international databases scanned by the AICIS Evaluation Prioritisation Tool | |---| | Safework Australia Hazardous Chemicals Information System (HCIS) | | European Commission database for information on cosmetic substances and ingredients (COSING) | | Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) Regulation registered substances | | European Chemicals Agency (ECHA) Substances of Very High Concern (SVHC) for Authorisation | | ECHA opinion on tattoo and PMU inks | | European Union (EU) Annex VI CLP Harmonised Classifications | | Safe Work Australia workplace exposure standards (WES) Reviews | | International Agency for Research on Cancer (IARC) | | United States National Toxicology Program (NTP) Report on Carcinogens (RoC) | | International Chemical Secretariat (ChemSec) Substitute It Now (SIN) List | | Malaysia Department of Occupational Safety and Health GHS classifications | | NICNAS e-cigarettes report | | NICNAS premanent make-up (PMU) inks report | | NICNAS tattoo inks report | | Swedish Chemicals Agency (KEMI) PRIO database | | Japan National Institute of Technology and Evaluation (NITE) GHS classifications | | OECD Portal on Per and Poly Fluorinated Chemicals | | NICNAS IMAP assessment data | | International Fragrance Association (IFRA) transparency list | | OECD Existing Chemicals Assessments (SIAR/SIAM/CoCAM) | | US Agency for Toxic Substances and Disease Registry (ATSDR) Minimal Risk Levels (MRLs) | | ATSDR Substance Priority List | | EU REACH Regulation Annex III inventory of substances | | ECHA Biocidal Active Substances | | NICNAS Priority Existing Chemical (PEC) assessments | | NICNAS Other Assessments | #### Table 1 continued | List of national and international databases scanned by the AICIS Evaluation Prioritisation Tool | |--| | | American Cleaning Institute (ACI) Cleaning Product Ingredient Safety Initiative (CPISI) US Interstate Chemicals Clearinghouse (IC2) High Priority Chemicals Data System (HPCDS) Hair Dye Substance Database (HDSD) Safe Work Australia HCIS - Exposure Standards REACH Authorisation List (REACH Annex XIV) Canada Chemicals Management Plan Phase 3 (CMP3) US EPA Safer Choice (Safer Chemicals Ingredients List) REACH Registry of harmonised GHS classification CLH intentions until outcome US EPA Chemical Data Reporting 2016 US EPA Chemical Data Reporting 2012 US EPA Toxic Substances Control Act (TSCA) Low-Priority Substances US EPA TSCA High-Priority substances undergoing risk evaluations Canada Domestic Substance List (DSL) 2017 Inventory Update COSMOS Database of cosmetic -related chemicals USEPA Integrated Risk Information System (IRIS) Assessments ECHA Community Rolling Action Plan (CoRAP) ECHA Nanoform Registry The Endocrine Disruptor (ED) Lists (European) Canada Significant New Activity (SNAc) Japan Chemical Substances Control Law (CSCL) Class I and II Specified Chemical Substances Consumer Product Information Database
(CPID) Global Automotive Declarable Substance List (GADSL) REACH Registered substances - reported use information REACH Restricted Substances (REACH Annex XVII) REACH Regulatory Management Option Analysis (RMOA) List REACH Mapping exercise - Plastic additives initiative REACH Public activities coordination tool (PACT) NICNAS Call for Information data NICNAS 2006 High Volume Industrial Chemicals List (HVICL) The Poisons Standard (the SUSMP) listings [extracted from Galleria Chemica] United Nations (UN) International Narcotics Control Board (INCB) "Red List" of drug precursors EU Endocrine Disruptors Strategy categorisation database USEPA Toxic Substances Control Act (TSCA) Chemical Substance Inventory Canada New Substances Risk Assessment Summaries NICNAS Excluded Use chemicals with nominated Industrial Uses US EPA CompTox Chemicals Dashboard List of Androgen Receptor Chemicals US EPA CompTox Chemicals Dashboard List of Color Index dyes #### Table 1 continued #### List of national and international databases scanned by the AICIS Evaluation Prioritisation Tool Substances in Products in the Nordic Countries (SPIN) database Canada CMP Petroleum Sector Stream Approach Canada CMP Substance Grouping Initiative Scientific Committee on Consumer Safety (SCCS) Opinions on health and safety risks source Cosmetic Ingredient Review (CIR) reports Use Information via Galleria Chemica NICNAS Assessment of genotoxicity and carcinogenicity concerns of monocyclic aromatic amine metabolites of azo dyes US EPA Pesticide Registration - Index of chemical names & pesticide chemical codes [Galleria Chemica] US National Institue of Occupational Safety and Health (NIOSH) Recommended Exposure Limits (RELs) [Galleria Chemica] Australian Inventory of Industrial Chemicals (AIICS) regulatory obligations Canadian Cosmetic Ingredient Hotlist of Restricted and Prohibited chemicals Montreal Protocol on Substances that Deplete the Ozone Layer Kyoto Protocol to limit and reduce greenhouse gas emissions Stockholm Convention on Persistent Organic Pollutants (POPs) Rotterdam Convention on hazardous chemicals United Nations Environment Programme (UNEP) scientific knowledge on endocrine disrupting chemicals Canada Toxic Substances List - Schedule 1 chemicals Ozone Protection and Synthetic Greenhouse Gas (OPSGG) Management Act 1989 **AICIS Evaluation Statements** # **Appendix B: Sample search strategy for scoping review** Sample search strategy used for the scoping review component of the e-cigarette toxicology report. The search strategy was run through Cochrane Central, MEDLINE (via Ovid), Embase (via Ovid), PsycInfo and CINAHL. Table 2: Sample search strategy | # | Search Statement | Results | Annotation | |----|--|---------|-------------------------| | 1 | exp electronic nicotine delivery systems/ | 12932 | | | 2 | exp vaping/ | 5275 | | | 3 | exp electronic cigarette/ | 14768 | | | 4 | (e-cig* or ecig*).mp. | 15285 | | | 5 | electr* cigar*.mp. | 15021 | | | 6 | (e-nicotine* or enicotine*).mp. | 18 | | | 7 | electr* nicotine*.mp. | 7364 | | | 8 | (vape or vaper or vapers or vaping).mp. | 8166 | | | 9 | 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 | 21949 | | | 10 | (adverse* adj2 (effect* or reaction* or event*)).ti,ab. | 1131606 | | | 11 | 'side effect*'.ti,ab. | 684748 | | | 12 | exp *Drug-Related Side Effects/ | 263101 | | | 13 | exp *adverse drug reaction/ | 263101 | | | 14 | exp *Drug Hypersensitivity/ | 57840 | | | 15 | exp *drug safety/ | 52800 | | | 16 | exp *Safety/ | 168439 | | | 17 | exp *toxicology/ | 57524 | | | 18 | exp *drug toxicity/ | 134711 | | | 19 | exp *Toxicity/ | 274460 | | | 20 | exp *sensitization/ | 23304 | | | 21 | (safe* or toxic*).ti. | 784931 | | | 22 | 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 | 2835191 | | | 23 | 9 and 22 | 1694 | | | 24 | remove duplicates from 23 | 1034 | | | 25 | limit 24 to yr="2019 -Current" | 505 | | | 26 | ("Conference Abstract" or editorial or letter or comment).pt,sh. | 8020114 | | | 27 | 25 not 26 | 392 | e-cig safety/tox | | 28 | systematic review.pt,sh. | 466046 | | | 29 | 9 and 28 | 362 | | | 30 | remove duplicates from 29 | 295 | | | 31 | limit 30 to yr="2019 -Current" | 182 | | | 32 | 31 not 26 | 151 | ecig systematic reviews | | 33 | 27 or 32 | 524 | | | 34 | remove duplicates from 33 | 523 | | ## Appendix C: Toxicological assessment data for chemicals identified as being use in e-cigarettes The EPT dataset did not distinguish where data on a chemical was not available because a toxicological assessment had not been completed or due to the chemical not being identified as a hazard/risk to health. As such, a dash "-" was used to report where information was not available. Table 3: Summary of health risks for chemicals known to be currently used in e-cigarettes based on toxicological assessment data | | | | Health as | sessment | Permitted use in Australia | | | | |--|---------------|--------------------|---|--|---|--|--|--| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | | | Ethyl maltol ETHYL HYDROXYPYRONE 2-ethyl-3-hydroxy-4-pyrone 4H-Pyran-4-one, 2-ethyl-3-hydroxy- 4H-PYRAN-4-ONE,2ETHYL-3-HYDROXY- 2-Ethyl-3-hydroxy-4H-pyran-4-one 2-Ethylpyromeconic acid | 4940-11-8 | - | - | Respiratory irritation
Cytotoxicity | May be used
as food
additive
(tabletop
sweetener) | - | | | | 4-Acetylanisole Acetanisole
 METHOXYACETOPHENONE
 4'-methoxyacetophenone
Ethanone, 1-(4-methoxyphenyl)-
1-(4-METHOXYPHENYL)ETHANON | 100-06-1 | - | - | - | - | Permitted for use only: (a) in topical medicines for dermal application; and (b) in oral medicines in combination with other permitted ingredients as part of a flavour proprietary excipient formulation. When used in a flavour, the total flavour proprietary excipient formulation in a medicine must be no more than 5%. | | | Table 3 continued | | | | Health as | sessment | Per | mitted use in Australia | |---|---------------|-----------------------|---|---|-----------|-------------------------| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | Benzene, ethyl-; Ethylbenzene ethyl benzene (R1) Ethylbenzene Benzene, ethyl Benzene, ethyl- Ethylbenzene HYDROCARBONS LIQUID AROMATIC HYDROCARBONS, LIQUID ETHYLBENZEN ETYLBENZEN Ethylbenzol Phenylethane | 100-41-4 | Yes (may
be fatal) | - | Causes serious eye irritation Causes skin irritation May be fatal if swallowed May cause damage to organs through prolonged or repeated exposure Possibly Carcinogenic Developmental Hepatic Urinary Acute Toxicity Aspiration Hazard | - | - | | Styrene; Benzene, ethenyl- Styrene styrene (R1) Benzene, ethenyl- Styrene Styrene, monomer; Phenylethylene; Vinyl benzene; STYREN Styrene, monomer Ethenyl benzene Phenylethylene Styrene monomer Styrol Vinyl benzene | 100-42-5 | Yes | | Possibly carcinogenic Neurological Suspected of damaging the unborn child Causes damage to the hearing organs through prolonged or repeated exposure Causes skin irritation Causes serious eye irritation Suspected of causing genetic defects May cause respiratory irritation May cause drowsiness or dizziness Acute Toxicity Low dose endocrine disruption Hematologic Hepatic Nervous | | | Table 3 continued | | | | Health as | sessment | Permitted use in Australia | | | | |---|----------------|--------------------|---|---|--|----------|--|--| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | | | benzyl alcohol Benzenemethanol BENZYLALKOHOL BENZENMETANOL alpha-Hydroxytoluene Phenylmethanol 2,6-Octadien-1-ol, 3,7-dimethyl-, 1-acetate, (2E)-
2,6-Octadien-1-ol,3,7-dimethyl-,acetate, (E)- Acetic acid geraniol ester Geranyl acetate trans-3,7-Dimethyl-2,6-octadien-1-yl acetate | 100-51-6 | Yes | Suspected | Harmful if swallowed Causes serious eye
irritation Acute Toxicity | May be used
as food
additive
(flavouring) | - | | | | benzaldehyde BENZALDEHYD | 100-52-7 | Yes | - | Harmful if swallowed Gastrointestinal Urinary Acute Toxicity | - | - | | | | α,α-Dimethylphenethyl butyrate alpha,alpha-Dimethylphenethyl butyrate DIMETHYL PHENETHYL BUTYRATE a,a-dimethylphenethyl butyrate Butanoic acid, 1,1-dimethyl-2-phenylethyl ester DIMETYL-2-FENYLETYLBUTANAT, 1,1- Benzyldimethylcarbinyl butyrate | 10094-
34-5 | - | - | Suspected skin sensitiser | - | - | | | | Benzene, (2,2-dimethoxyethyl)- Phenylacetaldehyde dimethyl acetal 1,1-dimethoxy-2-phenylethane 1,1-DIMETHOXY-2-PHENYLETHAN BENZEN,(2,2-DIMETHOXYETHYL)- Phenylacetaldehyde dimethyl acetal | 101-48-4 | - | - | Suspected carcinogen Suspected skin
sensitiser Suspected toxic
for reproduction | - | - | | | Table 3 continued | | | | Health as | sessment | Permitted use in Australia | | | | |---|---------------|--------------------|---|---|----------------------------|--|--|--| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | | | Octanal, 2-(phenylmethylene)- a-Hexyl-cinnamaldehyde 2-Benzylideneoctanal alpha-Hexylcinnamaldehyde HEXYL CINNAMAL 2 -Benzylideneoctanal a-hexylcinnamaldehyde HEXYL CINNAMALDEHYDE ALPHAHEXYLKANELALDEHYD OKTANAL,2-(FENYLMETYLEN)- .alphaHexylcinnamaldehyde alpha-Hexylzimtaldehyd Octanal, 2-(phenylmethylene)- | 101-86-0 | - | - | Causes skin irritation Suspected skin
sensitiser | - | Permitted for use only in combination with other permitted ingredients as a flavour or a fragrance. If used in a flavour the total flavour concentration in a medicine must be no more than 5%. If used in a fragrance the total fragrance concentration in a medicine must be no more 1%. | | | | Ethyl phenylacetate Benzeneacetic acid, ethyl ester | 101-97-3 | - | - | - | - | - | | | | Glycerol 1,2-diacetate 1,2,3-propanetriol, 1,2-diacetate 1,2-DIACETIN | 102-62-5 | - | - | - | - | - | | | | Methyl cinnamate 2-Propenoic acid,
3-phenyl-, methyl ester PROPENOIC 2- ACIID,
3-PHENYL-, METHYLESTER | 103-26-4 | - | - | - | - | - | | | | Ethyl cinnamate 2-Propenoic acid,
3-phenyl-, ethyl ester
FENYL-2-PROPENSYREETYLESTER, 3- | 103-36-6 | - | - | - | - | - | | | | Benzyl cinnamate 2-Propenoic
acid, 3-phenyl-, phenylmethyl ester
PROPENOIC ACID, 3-PHENYL-,
PHENYLMETHYL ESTER Cinnamic acid,
benzyl ester | 103-41-3 | - | - | - | - | - | | | Table 3 continued | | | | Health as | sessment | Permitted use in Australia | | | | |--|-----------------|--------------------|---|--|----------------------------|---|--|--| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | | | 1-Naphthalenol, 1,2,3,4,4a,5,8,8a-octahydro-
2,2,6,8-tetramethyl- OCTAHYDRO-
TETRAMETHYL-1-NAPHTHALENOL
(1R,4aS,8R,8aS)-2,2,6,8-tetramethyl-
1,2,3,4,4a,5,8,8a-octahydronaphthalen-1-ol
NAPHTHALENOL, 1-, 1,2,3,4,4A,5,8,8A-
OCTAHYDRO-2,2,6,8-TETRAMETHYL | 103614-
86-4 | - | - | - | - | - | | | | 4-Anisyl acetate p-Anisyl acetate
p-methoxybenzyl acetate Benzenemethanol,
4-methoxy-, 1-acetate ANISYL ACETATE
BENZENEMETHANOL, 4-METHOXY-, | 104-21-2 | - | - | - | - | Permitted for use only in combination with other permitted ingredients as a flavour or a fragrance. | | | | ACETATE Anisyl acetate | | | | | | If used in a flavour the total flavour concentration in a medicine must be no more than 5%. | | | | | | | | | | If used in a fragrance the total fragrance concentration in a medicine must be no more 1%. | | | | Anethol Anethole Benzene, 1-methoxy-4-(1-propen-1-yl)- 1-METHOXY-4-(1-PROPENYL) BENZEN Benzene, 1-methoxy-4-(1-propenyl)- BENZEN, 1-METOKSY-4-(1-PROPENYL)- | 104-46-1 | - | - | Suspected carcinogen Suspected skin sensitiser | - | Permitted for use only in combination with other permitted ingredients as a flavour. | | | | 1-Methoxy-4-propenylbenzene Anise
Camphor p-Propenylanisole Anisole,
p-propenyl- p-Methoxypropenylbenzene | | | | | | If used in a flavour the total flavour concentration in a medicine must be no more than 5%. | | | | γ-Octalactone gamma-Octalactone Octan-
4-olide 2(3H)-Furanone, 5-butyldihydro- | 104-50-7 | - | - | - | - | - | | | Table 3 continued | | | | Health assessment | | | nitted use in Australia | |--|---------------|--------------------|---|--|-----------|-------------------------| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | 2-Propenal, 3-phenyl- Cinnamaldehyde CINNAMAL 2 -Propenal, 3-phenyl- Cinnamaldehyde/3-phenyl-propen-2- al(Cinnamic aldehyde) ACROLEIN 3-PHENYL-2-PROPENAL Sinnamaldehydi PROPENAL,2-, 3-FENYL- trans-Cinnamaldehyde | 104-55-2 | - | - | Harmful in contact with skin Causes skin irritation Causes serious eye irritation May cause an allergic skin reaction May cause respiratory irritation | - | - | | y-Nonalactone gamma-Nonalactone
Nonan-4-olide 2(3H)-Furanone, dihydro-5-
pentyl- Dihydro-5-pentyl-2(3H)-furanone
FURANON, DIHYDRO-5-PENTYL-2(3H)-
gamma-n-Amylbutyrolactone
gammaNonalactone | 104-61-0 | - | - | - | - | - | | γ-Undecalactone 5-Heptyloxolan-2-one gamma-Undecalactone Undecan-4-olide 2(3H)-Furanone, 5-heptyldihydro- FURANON, 5-HEPTYLDIHYDRO-2(3H)- 5-Heptyldihydro-2(3H)-furanone gamma-n-Heptylbutyrolactone 4-Hydroxyundecanoic acid lactone Aldehyde C-14 gamman-Heptylbutyrolactone Peach lactone (RS) gammaUndecalactone Undecanoic acid, 4-hydroxy-,.gammalactone | 104-67-6 | - | - | - | - | - | | p-Tolualdehyde p-Tolylaldehyde
4-METHYLBENZALDEHYDE Benzaldehyde,
4-methyl- TOLUALDEHYDE, P-
4-METHYLBENZALDEHYD p-Formyltoluene | 104-87-0 | - | - | Suspected acutely toxic via the oral route Suspected carcinogen Suspected toxic for reproduction | - | - | ## Table 3 continued | | | | Health as | Permitted use in Australia | | | |--|---------------|--------------------|---|---|-----------|----------| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | Benzenemethanol, 4-methoxy- Anise alcohol
Anisyl alcohol 4 -Methoxybenzyl alcohol
4-METHOXYBENZYLALKOHOL | 105-13-5 | - | - | Harmful if swallowed Causes serious eye irritation May cause an allergic skin reaction | - | - | | γ-Heptalactone gamma-Heptalactone
 Heptan-4-olide 2(3H)-Furanone,
dihydro-5-propyl- | 105-21-5 | - | - | - | - | - | | ethyl propionate Ethyl propanoate
Propanoic acid, ethyl ester OMEGA-3-
ACID ETHYL ESTERS ETHYLPROPIONAT
ETYLPROPANAT Ethyl ester propanoic acid
Ethyl propiomate | 105-37-3 | - | - | Suspected carcinogen Suspected skin
sensitiser Suspected toxic
for reproduction | - | - | | Diethyl malonate Propanedioic acid,
1,3-diethyl ester DIETHYLMALONAT
Dietyylimalonaatti MALONSYREDIETYLESTER | 105-53-3 | - | - | - | - | - | | Ethyl butyrate Ethyl butanoate
Butanoic acid, ethyl ester ETHYLBUTYRAT
ETYLBUTYRAT (C6H12O2)
Ethyl ester butanoic acid | 105-54-4 | - | - | Suspected skin sensitiser | - | - | Table 3 continued | | | | Health assessment | | | Permitted use in Australia | | |
---|---------------|--------------------|---|--|-----------|--|--|--| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | | | 1,1-diethoxyethane; acetal Acetal 1,1-Diethoxyethane ACETALDEHYDE DIETHYL ACETAL Ethane, 1,1-diethoxy- 1,1-diethoxyethane; acetal 1,1-DIETHOXYETHAN DIETOKSYETAN, 1,1- Acetal | 105-57-7 | - | - | Causes serious eye irritation Causes skin irritation Suspected skin sensitiser Suspected toxic for reproduction | | Permitted for use only in combination with other permitted ingredients as a flavour or a fragrance. If used in a flavour the total flavour concentration in a medicine must be no more than 5%. If used in a fragrance the total fragrance concentration in a medicine must be no more 1%. | | | | Geranyl acetate 2,6-Octadien-1-ol,
3,7-dimethyl-, acetate, (E)- 2,6-Octadien-1-ol,
3,7-dimethyl-, 1-acetate, (2E)- OKTADIEN-
1-OL,3,7-DIMETYL-,ACETAT,(E),2,6-
Citronellyl acetate | 105-87-3 | - | - | - | - | - | | | | Geranyl propionate 2,6-Octadien-1-ol, 3,7-dimethyl-, propanoate, (E)- 2,6-Octadien-1-ol, 3,7-dimethyl-, 1-propanoate, (2E)- PROPANOATE,2,6-OCTADIEN-OL, 3,7-DIMETHYL-, | 105-90-8 | - | - | Suspected skin sensitiser | - | - | | | | Citronellol 6-Octen-1-ol, 3,7-dimethyl- dl-Citronellol Citronellol /+ - 3,7-dimethyloct-6-en-1-ol OKTEN-1-OL,3,7-DIMETYL, 6- 3,7-Dimethyl-6-octen-1-ol (.+)betaCitronellol Cephrol .betaCitronellol (+-). BetaCitronellol 6-Octen-1-ol, 3,7-dimethyl-, (3S)- 6-Octen-1-ol, 3,7-dimethyl-, (S)- L-Citronellol (S)-(-)-beta-Citronellol | 106-22-9 | - | - | - | - | - | | | Table 3 continued | | | | Health as | sessment | Permitted use in Australia | | |---|---------------|--------------------|---|--|----------------------------|----------| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | Isoamyl butyrate Isopentyl butyrate
Butanoic acid, 3-methylbutyl ester
3-methylbutyl butyrate
3-METHYLBUTYLBUTYRAT
BUTANOIC ACID , 3-METHYLBUTYL ESTER | 106-27-4 | - | - | Suspected skin sensitiser | - | - | | Geranyl butyrate Butanoic acid, 3,7-dimethyl-
2,6-octadienyl ester, (E)- Butanoic acid,
(2E)-3,7-dimethyl-2,6-octadien-1-yl ester
BUTANOIC ACID, 3,7-DIMETHYL-2,6-OCTA-
DIENYL ESTER (E-) | 106-29-6 | - | - | Suspected skin sensitiser | - | - | | Ethyl heptanoate Heptanoic acid, ethyl ester
Ethyl enantate OMEGA-3-ACID ETHYL
ESTERS HEPTANOIC ACID , ETHYL ESTER | 106-30-9 | - | - | Suspected skin sensitiser | - | - | | Ethyl caprylate Octanoic acid, ethyl ester
Ethyl octanoate OMEGA-3-ACID ETHYL
ESTERS Caprylic acid ethyl ester
Ethyl n-octanoate | 106-32-1 | - | - | Suspected skin sensitiser | - | - | | p-cresol [1]; o-cresol [2]; p-cresol [3]; mix-cresol [4]; Phenol, 4-methyl-; p-cresol; o-cresol; mix-cresol p-cresol Phenol, 4-methyl- CRESOL, PARA- Methylphenol CRESOLS PHENOLS 4-Methylphenol p-cresol [3] KRESOL, p- p-Cresol p-Hydroxytoluene p-Methylphenol para-Cresol 4-Cresol p-Cresylic acid 1-Hydroxy-4-methylbenzene 4-Hydroxytoluene 4-Methyl phenol | 106-44-5 | - | - | Suspected carcinogenic, mutagenic, reprotoxic (CMR) Low dose endocrine disruptor Toxic if swallowed Toxic in contact with skin Causes severe skin burns and eye damage Acute Toxicity (dermal and oral) Skin corrosion | - | - | Table 3 continued | Chemical name(s) | | | Health as | sessment | Per | mitted use in Australia | |--|---------------|--------------------|---|---|-----------|-------------------------| | | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | Glyceryl 1-monoacetate 2,3-dihydroxypropyl
acetate 2,3-DIHYDROXYPROPYLACETAT | 106-61-6 | - | - | Suspected mutage Suspected skin
sensitiser Suspected toxic
for reproduction | - | - | | Methyl hexanoate Hexanoic acid,
methyl ester METHYL CAPROATE | 106-70-7 | - | - | - | - | - | | Melonal 2,6-Dimethyl-5-heptenal
DIMETHYL HEPTENAL DIMETHYLHEPTENAL
2,6-dimethylhept-5-enal 5-Heptenal,
2,6-dimethyl- HEPTENAL, 2,6-DIMETHYL-5- | 106-72-9 | - | - | Suspected carcinoge Suspected skin sensitiser | - | - | | Methyl heptanoate Heptanoic acid,
methyl ester | 106-73-0 | - | - | Suspected skin sensitiser | - | - | | 1,3-butadiene; buta-1,3-diene Buta-1,3-diene 1,3-Butadiene BUTADIENE Buta -1,3-diene, see also entries 464-611 1,3-Butadiene (h) Butadiene, 1,3 - 1,3 Butadiene 1,3-butadiene; buta-1,3-diene BUTA-1,3-DIEN 1,3-butadiene buta-1,3-diene BUTADIEN, 1,3- Biethylene Bivinyl Divinyl Erythrene Vinylethylene | 106-99-0 | - | - | Carcinogenic May cause genetic
defects Suspected of
damaging fertility Suspected of damaging
the unborn child Mutagenic | - | - | | acrolein; prop-2-enal; acrylaldehyde acrolein (R1); acrylaldehyde; prop-2-enal Acrolein 2-Propenal Acrylaldehyde ACRYLALDEHYD acrolein prop-2-enal acrylaldehyde 2-Propen-1-one Acquinite Acrylic aldehyde Allyl aldehyde Prop-2-en-1-al Propenal | 107-02-8 | Yes (fatal) | - | Causes severe skin burns and eye damage Fatal if swallowed Toxic in contact with skin Carcinogenic Acute Toxicity (inhalation and dermal) Skin corrosion | - | - | Table 3 continued | | | | Health as | sessment | Permitted use in Australia | | |--|---------------|--------------------|---|--|----------------------------|----------| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | allyl alcohol; 2-Propen-1-ol Allyl alcohol 2-Propen-1-ol ALLYLALKOHOL PROPEN-1-OL, 2- 1-Propenol-3 2-Propene-1-ol Vinyl carbinol AA Allylic alcohol Propenol 1-Propen-3-ol 2-Propenol | 107-18-6 | Yes (fatal) | - | Hepatic Urinary Toxic if swallowed Fatal in contact with skin Causes serious eye irritation Causes skin irritation May cause damage to organs through prolonged or repeated exposure May cause respiratory irritation Acute Toxicity | - | - | | ethanediol; ethylene glycol; 1,2-Ethanediol Ethylene glycol 1,2-Ethanediol Ethane-1,2-diol Ethylene glycol (ethane-1,2-diol) ETHYLENGLYCOL ethanediol ethylene glycol ETANDIOL, 1,2- Monoethyleneglycol-Y MONOETILENOGLICOL GI 1,2-Dihydroxyethane Glycol alcohol Monoethylene glycol | 107-21-1 | - | - | Urinary Harmful if swallowed May cause respiratory irritation Carcinogenic Endocrine disruption Mutagenic Toxic for reproduction | - | - | | Glyoxal Ethanedial ETANDIAL Biformyl
Diformyl Oxaldehyde | 107-22-2 | Yes | - | Harmful if swallowed Suspected of causing genetic defects Causes serious eye irritation May cause allergic skin reaction Causes skin irritation Mutagenic Acute toxicity Skin sensitisation | - | - | ## Table 3 continued | | | Health assessment | | | Permitted use in Australia | | |--|---------------|--------------------|---
--|----------------------------|----------| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | 2-Acetylpyrrole Methyl 2-pyrrolyl ketone
1-(1H-pyrrol-2-yl)ethan-1-one Ethanone,
1-(1H-pyrrol-2-yl)- | 1072-83-9 | - | - | Suspected carcinogen Suspected mutagen | - | - | | γ-Valerolactone 2(3H)-Furanone,
dihydro-5-methyl- gamma-Valerolactone
4-hydroxy pentanoic acid | 108-29-2 | - | - | Suspected mutagen Suspected skin
sensitiser Suspected toxic
for reproduction | - | - | | m-cresol o-cresol p-cresol mix-cresol
Phenol, 3-methyl- Methylphenol CRESOLS
PHENOLS KRESOL, m- Cresol (all isomers)
1-Hydroxy-3-methylbenzene 3-Cresol
3-Methylphenol meta-Cresol m-Cresylic acid
3-Hydroxytoluene 3-Methyl phenol | 108-39-4 | - | - | Nervous Toxic if swallowed Toxic in contact
with skin Causes severe skin
burns and eye damage Acute Toxicity
(dermal and oral) Skin corrosion | - | - | | 2,6-Dimethylpyridine 2,6-Dimethylpyridine;
2,6-Lutidine Pyridine, 2,6-dimethyl-
2,6-DIMETHYLPYRIDIN | 108-48-5 | - | - | Suspected acutely toxic via the inhalation route Suspected carcinogen | - | - | | Ethyl isovalerate Butanoic acid, 3-methyl-,
ethyl ester EHTYL ISOVALERATE | 108-64-5 | - | - | Suspected skin sensitiser | - | - | Table 3 continued | | | | Health as | sessment | Pern | nitted use in Australia | |--|---------------|--------------------------|---|--|-----------|-------------------------| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | Toluene Benzene, methyl- toluene; methylbenzene HYDROCARBONS LIQUID AROMATIC HYDROCARBONS, LIQUID TOLUEN Toluol Methyl benzene Methyl benzol Phenyl methane | 108-88-3 | Yes
(may be
fatal) | | Carcinogenic Mutagenic Toxic for reproduction Nervous Urinary Neurological Immunological Causes skin irritation May cause damage to organs through prolonged or repeated exposure May damage fertility or the unborn child May cause drowsiness or dizziness May be fatal if swallowed Aspiration Toxicity | | | | Phenol carbolic acid monohydroxybenzene phenylalcohol Phenol phenol carbolic acid monohydroxybenzene phenylalcohol FENOL Hydroxybenzene Monohydroxybenzene Phenyl alcohol Phenyl hydroxide | 108-95-2 | Yes | - | Suspected mutagenic Suspected of causing genetic defects Toxic if swallowed Toxic in contact with skin May cause damage to organs through prolonged or repeated exposure Causes severe skin burns and eye damage Acute Toxicity (inhalation, dermal and oral) Skin corrosion | - | - | Table 3 continued | | | | Health as | sessment | Permitted use in Australia | | | |--|---------------|--------------------|---|--|----------------------------|--|--| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | | 2-Methylpyrazine Pyrazine, methyl-
Pyrazine, 2-methyl- | 109-08-0 | - | - | - | - | Permitted for use only in combination with other permitted ingredients as a flavour or a fragrance. If used in a flavour the total flavour concentration in a medicine must be no more than 5%. If used in a fragrance the total fragrance concentration in a medicine must be no more 1%. | | | Butyl isovalerate Butanoic acid, 3-methyl-,
butyl ester BUTYL-3-METYLBUTANAT | 109-19-3 | - | - | Suspected skin sensitiser | - | - | | | Isobutyl acetate Acetic acid, 2-methylpropyl ester Isobutyle acetate 2-Methylpropyl acetate Acetic acid, 2-methylpropyl ester ISOBUTYLACETAT METYLPROPYLACETAT, 2- Butyl acetate Acetic acid, isobutyl ester Isobutyl ester of acetic acid 2-Methylpropyl ester of acetic acid beta-Methylpropyl ethanoate | 110-19-0 | - | - | May cause drowsiness
or dizziness Repeated exposure
may cause skin dryness
and cracking | - | - | | Table 3 continued | | | | Health as | sessment | Permitted use in Australia | | | |---|---------------|--------------------------|---|---|----------------------------|----------|--| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | | n-hexane Hexane HEXAN HEKSAN, n- Diethylmethylmethane Diisopropyl 2,2-Dimethylbutane 2,3-Dimethylbutane Isohexane 2-Methylpentane 3-Methylpentane Hexyl hydride normal-Hexane | 110-54-3 | Yes
(may be
fatal) | - | Nervous Causes skin irritation Suspected of damaging fertility/Reproductive May cause drowsiness or dizziness May cause damage to organs through prolonged or repeated exposure May be fatal if swallowed Aspiration toxicity Low dose endocrine disruption | - | - | | | Pentanal Valeraldehyde 1-Pentanal
n-Valeraldehyde Amyl aldehyde Valeral
Valeric aldehyde | 110-62-3 | Yes | - | Causes skin irritation May cause respiratory irritation May cause an allergic skin reaction Causes serious eye irritatiion | - | - | | | Propyl isocyanate Propane, 1-isocyanato- | 110-78-1 | - | - | Suspected carcinogenSuspected mutagenSuspected skin
sensitiser | - | - | | | cyclohexane CYCLOHEXAN
CYKLOHEKSAN Hexahydrobenzene
Hexamethylene Hexanaphthene
Benzene hexahydride | 110-82-7 | Yes
(may be
fatal) | - | May be fatal
if swallowed Causes skin irritation May cause drowsiness
or dizziness Aspiration toxicity | - | - | | Table 3 continued | | | | Health as | sessment | Pern | nitted use in Australia | |---|---------------|--------------------|---|--|-----------|-------------------------| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | pyridine PYRIDIN Azabenzene Azine | 110-86-1 | Yes | | Hepatic Possibly carcinogenic Harmful if swallowed Harmful in contact with skin Causes severe skin burns and eye damage May cause damage to organs through prolonged or repeated exposure Acute toxicity (inhalation, dermal and oral) | - | - | | Methylheptenone 6-Methyl-5-hepten-2-one
Hept-5-en-2-one, 6-methyl- 6-methylhept-
5-en-2-one 5-Hepten-2-one, 6-methyl-
HEPTEN-2-ONE, 6-METHYL-5-
Methyl isohexenyl ketone
6-Methyl-5-hepten-2-one | 110-93-0 | - | - | - | - | - | | Butyl hexadecanoate BUTYL PALMITATE
Hexadecanoic acid, butyl ester | 111-06-8 | - | - | Suspected skin sensitiser | - | - | | Folione 2-Octynoic acid, methyl ester
Methyl 2-octynoate Methyl 2-Octynoate
Methyl oct-2-ynoate Methyl heptine carbonate | 111-12-6 | - | - | Suspected skin irritant Suspected skin sensitiser Suspected toxic for reproduction | - | - | | 1-Hexanol hexan-1-ol Hexyl alcohol
HEXANOL (C6) HEKSANOL, 1- n-Hexanol
Hexanol, branched and linear n-Hexyl alcohol | 111-27-3 | - | - | Harmful if swallowed Causes serious
eye irritation Causes skin irritation Acute toxicity | - | - | Table 3 continued | | | | Health as | sessment | Per | mitted use in Australia |
--|---------------|--------------------|---|---|-----------|--| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | 2,2' -oxybisethanol diethylene glycol Ethanol, 2,2'-oxybis- 2,2' -oxydiethanol Diethylene glycol (DEG) diethylene glycol esterified Diethylene glycol ester of disproportionated rosin Disproportionated rosin diethylene glycol ester Rosin urea formaldehyde condensate 2,2'-oxydiethanol 2,2'-Oxybis[ethanol] Ethanol, 2,2'-oxybis- 2,2' -oxybisethanol diethylene glycol DIETYLENGLYKOL 2,2'-Oxybis[ethanol] | 111-46-6 | - | - | Suspected carcinogenic, mutagenic, reprotoxic (CMR) Harmful if swallowed Acute toxicity | - | Only for use in topical medicines for dermal application and not to be included in medicines intended for use The concentration in the medicine must be no more than 5%.in the eye. | | Glutaric acid, dimethyl ester Pentanedioic acid, dimethyl ester Pentanedioic acid, 1,5-dimethyl ester DIMETHYL GLUTARATE PENTANDISYREDIMETHYLESTER Dimetyyliglutaraatti DIMETYLPENTANDIOAT | 1119-40-0 | - | - | Potential endocrine
disruptor | - | - | | 3-Ethenylpyridine | 1121-55-7 | - | - | - | - | - | | Decyl acetate Acetic acid, decyl ester DECYLACETAT EDDIKSYRE, DECYL ESTER | 112-17-4 | - | - | Suspected skin sensitiser | - | - | | 2-Acetylpyridine Ethanone, 1-(2-pyridinyl)-
2-ACETYLPYRIDIN | 1122-62-9 | - | - | - | - | Permitted for use only in combination with other permitted ingredients as a flavour or a fragrance. If used in a flavour the total flavour concentration in a medicine must be no more than 5%. If used in a fragrance the total fragrance concentration in a medicine must be no more 1%. | Table 3 continued | | | | Health as | sessment | Peri | mitted use in Australia | |---|---------------|--------------------|---|-------------------------------|-----------|-------------------------| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | Triethylene glycol Ethanol,
2,2'-[1,2-ethanediylbis(oxy)]bis-
Triethyleneglycol 2,2'-(ethylenedioxy)
diethanol Ethanol, 2,2'-[1,2-ethanediylbis(oxy)]
bis- 2,2'-(ETHYLENDIOXY)DIETHANOL
Etyleenidioksi)dietanoli TRIETYLENGLYKOL
Ethanol, 2,2'-(1,2-ethanediylbis(oxy)bis- | 112-27-6 | - | - | - | - | - | | n-Decanal 1-Decanal Decanal
Decaldehyde DEKANAL Aldehyde C10
Capric aldehyde Decyl aldehyde
Aldehyde C-10 n-Decyl aldehyde | 112-31-2 | - | - | - | - | - | | 2-(2-butoxyethoxy)ethanol diethylene glycol monobutyl ether butyl carbitol Diethylene glycol mono butyl ether [2-(2-buthoxyethoxy) ethanol] 2-(2-butoxyethoxy)ethanol Ethanol, 2-(2-butoxyethoxy)- Diethylene glycol monobutyl ether BUTOXYDIGLYCOL Diethylene glycol monobutyl ether (DEGBE) Ethanol, 2-(butoxyethoxy)- Diethylene glycol mono-N-butyl ether 2-(2-butoxyethoxy) ethanol (DEGBE) 2-(2-butoxyethoxy) ethanol BUTYLDIGLYCOL 2-(2-butoxyethoxy)ethanol diethylene glycol monobutyl ether BUTOKSYETOKSY) ETANOL, 2-(2- Diethylene glycol monobutyl ether Diglycol monobutyl ether Ethanol, 2,2'-oxybis-, monobutyl ether O-Butyl diethylene glycol | 112-34-5 | - | | Causes serious eye irritation | - | | Table 3 continued | Chemical name(s) | | | Health as | sessment | Permitted use in Australia | | | |--|---------------|--------------------|---|--|----------------------------|--|--| | | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | | Diethyl carbitol Diethylene glycol
diethyl ether DIETHOXYDIGLYCOL
Bis(2-ethoxyethyl) ether Ethane,
1,1'-oxybis[2-ethoxy- DIETHYLENE GLYCOL
DIETHYLENGLYCOLDIETHYLETHER
bis((2-ethoxyethyl) ether | 112-36-7 | - | - | - | - | Permitted for use only in combination with other permitted ingredients as a flavour or a fragrance. If used in a flavour the total flavour concentration in a medicine must be no more than 5%. | | | | | | | | | If used in a fragrance the total fragrance concentration in a medicine must be no more 1%. | | | Methyl hexadecanoate Hexadecanoic acid,
methyl ester METHYL PALMITATE
HEXADECANSYRE METHYLESTER
Palmitic acid, methyl ester | 112-39-0 | - | - | - | - | - | | | Dodecane n-Dodecane DODECAN
Dodekaani | 112-40-3 | - | - | - | - | - | | | 2,3,5,6-Tetramethylpyrazine TETRAMETHYLPYRAZINE Pyrazine, 2,3,5,6-tetramethyl- Pyrazine, tetramethyl- | 1124-11-4 | - | - | Suspected acutely toxic
via the oral route Suspected carcinogen | - | Permitted for use only in combination with other permitted ingredients as a flavour. If used in a flavour the total flavour concentration in a medicine must be no more than 5%. | | | 1,2-bis(2-methoxyethoxy)ethane triethylene glycol dimethyl ether triglyme Methyltriglyme 2,5,8,11-Tetraoxadodecane Triethylene glycol dimethyl ether 2,5,8,11-Tetraoxadodecane 1,2 -Bis(2-methoxyethoxy)ethane 1,2-bis(2-methoxyethoxy)ethane (TEGDME; triglyme) | 112-49-2 | - | - | May damage
unborn child Suspected of
damaging fertility Toxic for reproduction | - | - | | Table 3 continued | | | | Health as | sessment | Pern | nitted use in Australia | |--|---------------|--------------------|---|------------------------|---|--| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | Ethoxytriglycol Triethylene glycol,
monoethyl ether 2-(2-(2-ethoxyethoxy)
ethoxy)ethanol Ethanol,
2-[2-(2-ethoxyethoxy)ethoxy]-
Triethylene glycol monoethyl ether
ETANOL,2-(2-(2-ETOKSYETOKSY)
ETOKSYL)- 3,6,9-Trioxaundecan-1-ol
Triethylene glycol ethyl ether | 112-50-5 | - | - | - | - | - | | 1-Dodecanol Dodecan-1-ol Lauryl alcohol
Dodekan-1-oli LAURYLALKOHOL
1-Hydroxydodecane Alcohol, C12
Dodecyl alcohol | 112-53-8 | - | - | | - | Permitted for use only: (a) in topical medicines for dermal application; and (b) in oral medicines in combination with other permitted ingredients as part of a flavour proprietary excipient formulation. When used in a flavour, the total flavour proprietary excipient formulation in a medicine must be no more than 5%. | | Tetraethylene glycol Ethanol, 2,2'-[oxybis(2,1-ethanediyloxy)]bis- 3,6,9-trioxaundecane-1,11-diol Ethanol, 2,2'-[oxybis(2,1-ethanediyloxy)]bis- POLYOXYETHYLENE(MW 200) TETRAETHYLENGLYCOL ETANOL,2,2'-(OXYBIS(2,1-ETANDIYLOXY))BIS- alpha-Hydro-omega-hydroxypoly(oxy-1,2-ethanediyl) Glycols, polyethylene | 112-60-7 | - | - | - | Yes May be used as food additive (processed meat, poultry and game products in whole cuts or pieces) | - | ## Table 3 continued | Chemical name(s) | | | Health as | sessment | Per | mitted use in Australia |
---|---------------|--------------------|---|---|-----------|-------------------------| | | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | Methyl octadecanoate Octadecanoic acid,
methyl ester METHYL STEARATE
Stearic acid, methyl ester | 112-61-8 | - | - | - | - | - | | Lauryl acetate Acetic acid, dodecyl ester
Dodecyl acetate | 112-66-3 | - | - | Suspected skin sensitiser | - | - | | Caryophyllene oxide [1R-(1R*,4R*,6R*,10S*)]-4,12,12-trimethyl-9-methylene-5-oxatricyclo[8.2.0.04,6]dodecane 5-Oxatricyclo[8.2.0.04,6]dodecane, 4,12,12-trimethyl-9-methylene-, [1R-(1R,4R,6R,10S)]- BETA-CARYOPHYLLENE OXIDE 5-Oxatricyclo[8.2.0.04,6]dodecane, 4,12,12-trimethyl-9-methylene-, (1R,4R,6R,10S)- 5-OXATRICYCLO(8.2.0.04,6)DODECANE, 4,12,12-TRIMETHYL-9-METHYLENE-, (1R-(1R*,4R*,6R*,10S*))- Caryophyllene oxide | 1139-30-6 | - | Suspected | Suspected bioaccumulative Suspected carcinogen Suspected mutagen Suspected skin sensitiser Suspected toxic for reproduction | - | - | | 1,6-Octadien-3-ol, 3,7-dimethyl-, acetate
Linalyl acetate Linalylacetate 1,6-Octadien-
3-ol, 3,7-dimethyl-, 3-acetate 3,7-DIMETHYL-
1,6-OCTADIEN-3-YLACETAT OKTADIEN-3-
OL,3,7-DIMETYL-,ACETAT, 1,6 Linalool acetate | 115-95-7 | - | - | Causes skin irritation May cause an allergic reaction | - | - | | Hydroxyacetone 2-Propanone, 1-hydroxy-
1-HYDROXY-2-PROPANON | 116-09-6 | - | - | Suspected
skin sensitiserSuspected toxic
for reproduction | - | - | Table 3 continued | | | Health assessment | | | Permitted use in Australia | | |---|---------------|--------------------|---|--|--|----------| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | 1,2-Benzenedicarboxylic acid, bis(2-ethylhexyl) ester bis(2-ethylhexyl) phthalate di-(2-ethylhexyl) phthalate Diethylhexyl phthalate (DEHP) 1,2-Benzenedicarboxylic acid, bis(2-ethylhexyl) ester Phthalic acid, bis(2-ethylhexyl) ester Bis(2-ethylhexyl) 1,2-benzenedicarboxylate Bis(2-ethylhexyl) 0-phthalate Di-2-ethylhexyl-phthalate Ethylhexyl phthalate Dioctyl phthalate Di(isooctyl) phthalate Dioctyl phthalate Di-sec-octyl phthalate 1,2-bis(2-ethylhexyl) ester Di(2-ethylhexyl) phthalate bis(2-ethylhexyl) phthalate; di-(2-ethylhexyl) phthalate; DEHP Di-(2-ethylhexyl) phthalate Bis(2-ethylhexyl) benzene-1,2-dicarboxylate DI(2-ETHYLHEXYL)PHTHALAT bis(2-ethylhexyl) phthalate di-(2-ethylhexyl) phthalate BENZENDIKARBOKSYLSYRE 1,2-, BIS(2-ETYLHEKSYL)ESTER Bis(n-octyl) phthalate Dioctyl o-benzenedicarboxylate Dioctyl phthalate (DOP) Benzenedicarboxylic acid, dioctyl ester 1,2-Benzenedicarboxylic acid, dioctyl ester 1,2-Benzenedicarboxylic acid, bis(2-ethylhexyl) phthalate bis-(2-Ethylhexyl) phthalate | 117-81-7 | | | Possibly carcinogenic Hepatic May cause cancer May damage fertility May damage the unborn child Low dose endocrine disruption | | | | Benzoic acid, 2-hydroxy-, phenylmethyl ester
Benzyl salicylate BENZYLSALICYLAT
 BENZOSYRE,2-HYDROKSY,
FENYLMETYL ESTER | 118-58-1 | - | - | Causes serious
eye irritation May cause an
allergic reaction Low dose endocrine
disruption | May be used
as food
additive
(preparations
of food
additives) | - | Table 3 continued | | | Health assessment | | | Permitted use in Australia | | |--|---------------|--------------------|---|--|---|----------| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | Ethyl salicylate Benzoic acid, 2-hydroxy-, ethyl ester | 118-61-6 | - | - | Suspected acutely toxic via the oral route Suspected mutagen Suspected skin irritant Suspected toxic for reproduction | - | - | | Maltol 3-hydroxy-2-methyl-4-pyrone 4H-Pyran-4-one, 3-hydroxy-2-methyl- PYRAN-4-ONE, 3-HYDROXY-2-METHYL-4H- 2-Methyl-3-hydroxypyran-4-one 3-Hydroxy-2-methylgammapyrone Veltol | 118-71-8 | - | - | Suspected acutely toxic via the oral route Suspected carcinogen Suspected mutagen Suspected skin sensitiser | May be used
as food
additive
(tabletop
sweetener) | - | | Methyl salicylate Benzoic acid, 2-hydroxy-,
methyl ester METHYL SALICYLATE LIQUID
METHYLSALICYLAT Metyylisalisylaatti
METYLSALICYLAT 2-Hydroxybenzoic acid,
methyl ester | 119-36-8 | - | - | Suspected carcinogenic,
mutagenic,
reprotoxic (CMR) | - | - | | Methanone, diphenyl- Benzophenone
BENZOPHENON DIFENYLMETANON | 119-61-9 | - | - | Suspected carcinogenic,
mutagenic, reprotoxic
(CMR) Suspected of causing
cancer Low dose endocrine
disruption | - | - | | 2H-1-Benzopyran-2-one, 3,4-dihydro-
3,4-Dihydrocoumarin Dihydrocoumarin | 119-84-6 | - | Suspected | Harmful if swallowed May cause an allergic
skin reaction Suspected carcinogen Suspected skin
sensitiser Suspected toxic
for reproduction | - | - | Table 3 continued | | | | Health assessment | | | Permitted use in Australia | | |---|---------------|--------------------|---|---|-----------|----------------------------|--| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | | Veratraldehyde 3,4-Dimethoxybenzaldehyde
Benzaldehyde, 3,4-dimethoxy-
3,4-DIMETHOXYBENZALDEHYD
BENZALDEHYD, 3,4-DIMETOKSI- | 120-14-9 | - | - | Suspected toxic via
the oral route Suspected carcinogen Respiratory irritation | - | - | | | Styrallyl propionate alpha-Methylbenzyl propionate STYRALYL PROPIONATE 1-phenylethyl propionate Benzenemethanol, .alphamethyl-, 1-propanoate Benzenemethanol, .alphamethyl-, propanoate alpha-Methylbenzyl propionate | 120-45-6 | - | - | Suspected skin sensitiser | - | - | | | Isobutyl benzoate Benzoic acid,
2-methylpropyl ester | 120-50-3 | - | - | - | - | - | | | benzyl benzoate Benzoic acid,
phenylmethyl ester BENZYLBENZOAT
 FENYLMETYLBENZOAT Benylate
Benzoic acid, benzyl ester
Benzyl phenylformate | 120-51-4 | - | - | Harmful if swallowed Acute Toxicity | - | - | | | Piperonal 1,3-Benzodioxole-5-carboxaldehyde HELIOTROPINE 1,3-Benzodioxole-5-carboxaldehyde 3,4-(METHYLENDIOXY)BENZALDEHYD BENZODIOKSOL-5-KARBOKSALDEHYD, 1,3- 3,4-Dihydroxybenzaldehyde methylene ketal 3,4-(Methylenedioxy)benzaldehyde 5-Formyl-1,3-benzodioxole Dioxymethylene protocatechuic aldehyde Piperonaldehyde Protocatechuic aldehyde methylene ether | 120-57-0 | - | - | - | - | - | | | Dimethyl terephthalate 1,4-Benzenedicarboxylicacid,dimethylester Dimethyl terephthalate (DMT) 1,4-Benzenedicarboxylic acid, 1,4-dimethyl ester DIMETHYLTEREPHTHALAT DIMETYLTEREFTALAT | 120-61-6 | - | - | Urinary | - | - | | Table 3 continued | | | | Health as | sessment | Perr | nitted use in Australia |
--|---------------|--------------------|---|---|-----------|-------------------------| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | 1,2-Benzenediol pyrocatechol 1,2-dihydroxybenzene Catechol o-Dihydroxybenzene Benzene-1,2-diol 1,2-dihydroxybenzene pyrocatechol BENZENDIOL, 1,2- Pyrocatechine o-Benzenediol o-Dihydroxybenzene 2-Hydroxyphenol | 120-80-9 | - | - | Toxic if swallowed Toxic in contact with skin Susptected of causing cancer Suspected of causing genetic defects Causes serious eye irritiation May cause allergic skin reaction Causes skin irritation Acute toxicity Mutagenic | - | | | Ethyl vanillin 3-ethoxy-4-hydroxybenzaldehyde Benzaldehyde, 3-ethoxy-4-hydroxy- 3-ETHOXY-4-HYDROXYBENZALDEHYD Bentsaldehydi, 3-etoksi-4-hydroksi- ETOKSI- 3-HYDROKSI-4-BENZALDEHYD Ethylvanillin | 121-32-4 | - | - | Respiratory irritation | - | - | | Vanillin Benzaldehyde, 4-hydroxy-3-methoxy-
 Bentsaldehydi, 4-hydroksi-3-metoksi-
BENZALDEHYD, 4-HYDROKSI-3-METOKSI-
3-Methoxy-4-hydroxybenzaldehyde
4-Hydroxy-3-methoxybenzaldehyde
m-Methoxy-p-hydroxybenzaldehyde | 121-33-5 | - | - | Irritation Cytotoxicity Impaired cell function | - | - | | 4-Methyl acetophenone p-Methylacetophenone Ethanone, 1-(4-methylphenyl)- METHYL(4-METHYLPHENYL)KETON METYLFENYL)-ETANON, 1-(4- 4'-Methylacetophenone | 122-00-9 | - | - | - | - | - | | Benzyl propionate Propanoic acid, phenylmethyl ester BENSYLPROPIONAT | 122-63-4 | - | - | - | - | - | Table 3 continued | | | | Health as | sessment | Per | mitted use in Australia | |--|---------------|--------------------|---|--|-----------|-------------------------| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | Anisaldehyde p-Anisaldehyde
p-Methoxybenzaldehyde Benzaldehyde,
4-methoxy- 4-METHOXYBENZALDEHYD
BENZALDEHYD, 4-METOKSY- Aubepine
p-Anisic aldehyde p-Formylanisole | 123-11-5 | - | - | - | - | - | | Diethyl succinate Butanedioic acid, 1,4-diethyl
ester BUTANEDIOIC ACID, DIETHYL ESTER
Butanoic acid, diethylester- | 123-25-1 | - | - | - | - | - | | Ethyl nonanoate Nonanoic acid, ethyl ester
ETHYL PELARGONATE OMEGA-3-ACID
ETHYL ESTERS Ethyl nonanoate | 123-29-5 | - | - | Suspected skin sensitiser | - | - | | 2,5-Dimethylpyrazine Pyrazine, 2,5-dimethyl- | 123-32-0 | - | - | Respiratory irritation Impaired cell function | - | - | | Propanal Propionaldehyde
Propionic aldehyde Propylaldehyde | 123-38-6 | - | - | Nervous Causes serious
eye irritation May cause respiratory
irritation Causes skin irritation | - | - | | Isopentyl alcohol 3-Methylbutan-1-ol
Isoamyl alcohol 1-Butanol, 3-methyl-
METYL-1-BUTANOL, 3- Fermentation amyl
alcohol Isobutyl carbinol 3-Methyl-1-butanol
 Primary isoamyl alcohol | 123-51-3 | - | - | - | - | - | | Ethyl caproate Hexanoic acid, ethyl ester
Ethyl hexanoate OMEGA-3-ACID ETHYL
ESTERS | 123-66-0 | - | - | Suspected skin
sensitiser Suspected toxic
for reproduction Respiratory irritation | - | - | Table 3 continued | Chemical name(s) | CAS
number | | Health as | sessment | Permitted use in Australia | | | |--|---------------|--------------------|---|--|----------------------------|--|--| | | | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | | Hexanoic acid, 2-propenyl ester Allyl caproate Allyl hexanoate Hexanoic acid, 2-propen-1-yl ester HEXANSYRE,2- PROPENYLESTER | 123-68-2 | - | - | Toxic if swallowed Toxic in contact with skin | - | Permitted for use only in combination with other permitted ingredients as a flavour or a fragrance. If used in a flavour the total flavour concentration in a medicine must be no more than 5%. If used in a fragrance the total fragrance concentration in a medicine must be no more 1%. | | | butyraldehyde Butanal n-Butanal | 123-72-8 | - | - | - | - | - | | | Acetic acid, butyl ester n-butyl acetate
Butyl acetate BUTYLACETAT
BUTYLACETAT, n- 1-Butanol acetate n-Butyl
ester of acetic acid Butyl ethanoate | 123-86-4 | - | - | May cause drowsiness
or dizziness Repeated exposure
may cause skin dryness
and cracking | - | - | | | isopentyl acetate isoamyl acetate 1-Butanol, 3-methyl-, acetate 1-Butanol, 3-methyl-, 1-acetate AMYL ACETATE 3-METHYLBUTYLACETAT METYL-1- BUTYLACETAT, 3- Amyl acetate (iso-, n- & sec- isomers) 3-Methylbutyl acetate | 123-92-2 | - | - | | - | Only for use in: - topical medicines for dermal application; or - combination with other permitted ingredients as a flavour proprietary excipient formulation. The total flavour proprietary excipient formulation in a medicine must not be more than 5%. | | | Butyl octadecanoate Octadecanoic acid,
butyl ester Butyl stearate BUTYLSTEARAT
Stearic acid, butyl ester | 123-95-5 | - | - | Suspected skin sensitiser | - | - | | Table 3 continued | | | | Health as | sessment | Permitted use in Australia | | |---|---------------|--------------------------|---|---|----------------------------|----------| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | Ethyl myristate Tetradecanoic acid,
ethyl ester OMEGA-3-ACID ETHYL ESTERS
ETHYLMYRISTAT TETRADECANOICACID,
ETHYL ESTER Ethyl tetradecanoate
Myristic acid, ethyl ester | 124-06-1 | - | - | Suspected skin sensitiser | - | - | | Octadecanamide STEARAMIDE STEARIC
ACID AMIDE | 124-26-5 | - | - | - | - | - | | 3-Buten-2-one, 3-methyl-4-(2,6,6-trimethyl-2-cyclohexen-1-yl)- Isomethyl-α-ionone alpha-iso-Methylionone ALPHA-ISOMETHYL IONONE METHYL IONONES 3 -Methyl-4-(2,6,6-trimethyl-2-cyclohexen-1-yl)-3-buten-2-one 3-methyl-4-(2,6,6-trimethyl-2-cyclohexen-1-yl)-3-buten-2-one alpha-Isomethylionone BUTEN-,3-, 2-ON, 3-METYL-4-(2,6,6-TRIMETYL-2-CYCLOHEKSEN-1-YL)- alpha-ionone, isomethyl- Isomethyl-alpha-ionone Methyl gamma-ionone | 127-51-5 | - | - | Causes serious eye irritation Causes skin irritation May cause an allergic skin reaction Suspected carcinogen Suspected skin sensitiser | - | - | | Bicyclo[3.1.1]heptane, 6,6-dimethyl-2-methylene- β -Pinene beta-Pinene Pin-2(10)-ene Pin-2(10)-eeni PINEN, beta- Bicyclo(3.1.1)heptane, 6,6-dimethyl-2-methylene- (-)-(1S,5S)-beta-pinene Bicyclo[3.1.1]heptane, 6,6-dimethyl-2-methylene-,(1S,5S)- (S)-(-)-beta-Pinene (S)-beta-Pinene | 127-91-3 | Yes
(may be
fatal) | - | May be fatal if swallowed Causes skin irritation May cause an allergic skin reaction Suspected skin sensitiser Suspected toxic for reproduction | - | - | Table 3 continued | | | | Health as | sessment | Pern | nitted use in Australia | |---|-----------------|--------------------------|---|---
---|-------------------------| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | Butylated Hydroxytoluene (BHT) 2,6-Ditert-butyl-p-cresol 2,6-tert-Butyl-p-cresol Dibutylhydroxytoluene Phenol, 2,6-bis(1,1-dimethylethyl)-4-methyl- PHENOLS Di-tert-butyyli-p-kresoli HYDROKSYTOLUEN, BUTYLERT 2,6-Bis(1,1-dimethylethyl)-4-methylphenol 2,6-Di-tert-butyl-4-cresol 2,6-Di-tert-butyl-4-methylphenol Dibutylated hydroxytoluene 4-Methyl-2,6-di-tert-butyl phenol | 128-37-0 | - | - | Carcinogen Low dose endocrine disruption Skin sensitiser | May be used
as a food
additive
(edible
oils and oil
emulsions) | - | | POLYCYCLIC AROMATIC HYDROCARBONS
Aromatic hydrocarbons, polycyclic
POLYCYCLISKE AROMATISKE
HYDROCARBONER | 130498-
29-2 | - | - | - | - | - | | Xylene Benzene, dimethyl- Xylene (mixed isomers) Xylene(s) XYLENES, TOTAL HYDROCARBONS LIQUID AROMATIC HYDROCARBONS, LIQUID XYLEN Dimethylbenzene Xylol Xylene range aromatic solvent Xylene range hydrocarbon solvent | 1330-20-7 | Yes
(may be
fatal) | - | Harmful in contact with skin May cause respiratory irritation Causes skin irritation May be fatal if swallowed Acute toxicity | - | - | | Methyl anthranilate Benzoic acid, 2-amino-,
methyl ester Methyl 2-aminobenzoate
METHYL-2-AMINOBENZOAT BENZOSYRE,
2-AMINO, METYL ESTER | 134-20-3 | - | - | Suspected carcinogen Suspected mutagen | - | - | | Linalool oxide LINALOOL DIHYDROEPOXIDE | 1365-19-1 | - | - | Suspected skin irritantSuspected skin sensitiser | - | - | Table 3 continued | | | | Health as | sessment | Permitted use in Australia | | |---|---------------|--------------------|---|--|----------------------------|----------| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | p-Mentha-1,8(9)-diene Limonene Dipentene trans-1-Methyl-4-(1-methylvinyl)cyclohexene Cyclohexene, 1-methyl-4-(1-methylethenyl)- dl-Limonene (racemic) 1,8(9)-p-Menthadiene p-Mentha-1,8-diene (Dipentene) 1-methyl-4-isopropenyl-1-cyclohexane LIMONEN dipentene limonene DIPENTEN 1-Methyl-4-(1-methyletheny)cyclohexene 1-Methyl-4-isopropenyl-1-cyclohexene 1-Methyl-4-isopropenyl-1-cyclohexene 1-Methyl-4-isopropenyl-1-cyclohexene 1-Methyl-4-isopropenyl-1-cyclohexene Cyclohexene Cyclohexene Cinen Cyclil Decene Cyclohexene, 4-isopropenyl-1-methyl- .delta1,8-Terpodiene DL-p-Mentha-1.8-diene Eulimen Kautschin Limonen Monocyclic terpene hydrocarbons Nesol p-Mentha-1,8-diene p-Mentha-1,8-diene, dl (+-)-alpha-Limonene Orange flavor d,I-Limonene dI-Limonene Orange flavor d,I-Limonene p-Mentha-1,8-diene, (R)-(+)- (R)-(+)-Limonene | 138-86-3 | - | - | Causes skin irritation May cause an allergic skin reaction Skin sensitiser Suspcected bioaccumulative Suspected carcinogen | - | - | | Benzyl acetate Benxyl acetate
Acetic acid, phenylmethyl ester
BENZYLACETAT Bentsyyliasetaatti
EDDIKSYRE,FENYLMETYLESTER | 140-11-4 | - | - | - | - | - | | Phenethyl isovalerate Butanoic
acid, 3-methyl-, 2-phenylethyl ester
BUTANOIC ACID, 3-METHYL-,
2-PHENYLETHYL ESTER | 140-26-1 | - | - | Suspected skin sensitiser | - | - | Table 3 continued | Chemical name(s) | | | Health as | sessment | Permitted use in Australia | | |---|---------------|--------------------|---|---|--|----------| | | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | 4-(1,1,3,3-tetramethylbutyl)phenol 4-tert-octylphenol 4-(2,4,4-Trimethylpentan- 2-yl)phenol Phenol, 4-(1,1,3,3-tetramethylbutyl)- PHENOLS 4-tert-Octylphenol=1,1,3,3- Tetramethyl-4-butylphenol 4-(1,1,3,3-tetramethylbutyl)phenol 4-tert-octylphenol OCTYLPHENOL, p- (1,1,3,3-Tetramethylbutyl)phenol Octylphenol Phenol, (1,1,3,3-tetramethylbutyl)- tert-Octylphenol | 140-66-9 | - | - | Causes skin irritation Causes serious eye damage Low dose endocrine disruption | - | - | | 2-Ethylhexyl fumarate DIETHYLHEXYL
FUMARATE Bis(2-ethylhexyl) fumarate
2-Butenedioic acid (2E)-, 1,4-bis(2-ethylhexyl)
ester 2-Butenedioic acid (E)-, bis(2-
ethylhexyl) ester OCTYL FUMARATE
BUTENEDIOIC ACID (E)-, BIS(2-ETHYLHEXYL)
ESTER, 2- | 141-02-6 | - | - | - | - | - | | Glycolaldehyde Glycollaldehyde
Acetaldehyde, hydroxy- | 141-46-8 | - | - | Suspected carcinogenSuspected skin irritantSuspected skin sensitiser | - | - | | Acetic acid ethyl ester Ethyl acetate
ethyl acetate Acetic ester Acetic acid
ethyl ester ETHYLACETAT ETYLACETAT
Acetic ester Ethyl ester of acetic acid
Ethyl ethanoate | 141-78-6 | - | - | May cause drowsiness
or dizziness Causes serious
eye irritation Repeated exposure
may cause skin dryness
and cracking | May be used
as a food
additive
(flavouring) | - | | Ethyl acetoacetate Butanoic acid,
3-oxo-, ethyl ester Etyyliasetoasetaatti
BUTANSYRE,3-OXO-,ETYLESTER
ETHYLACETOACETAT Acetoacetic acid,
ethyl ester | 141-97-9 | - | - | - | - | - | Table 3 continued | | | Health assessment | | | Permitted use in Australia | | |---|---------------|--------------------|---|---|---|---| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | n-Hexanoic acid Hexanoic acid
CAPROIC ACID HEXANSYRE
Butylacetic acid Capronic acid
n-Hexoic acid Pentylformic acid | 142-62-1 | - | - | - | - | - | | Hexyl acetate Acetic acid, hexyl ester
HEXYLACETAT EDDIKSYRE, HEKSYLESTER
Hexanol, acetate, branched and linear
Oxo hexyl acetate | 142-92-7 | - | - | - | - | - | | Tetraethylene glycol dimethyl ether
Bis(2-(2-methoxyethoxy)ethyl)ether
2,5,8,11,14-Pentaoxapentadecane
PENTAOXAPENTADECANE , 2,5,8,11,14 - | 143-24-8 | - | - | Toxic for reproduction | - | - | | 2,3,5-Trimethylpyrazine
TRIMETHYLPYRAZINE Pyrazine,
2,3,5-trimethyl- Pyrazine, trimethyl-
PYRAZINE, 2,3,5-TRIMETHYL | 14667-55-1 | - | - | Suspected toxic via oral route Suspected carcinogen | - | Permitted for use only in combination with other permitted ingredients as a flavour. If used in a flavour the total flavour concentration in a medicine must be no more than 5%. | | 2-sec-Butyl-cyclohexanone 2-sec-
Butylcyclohexanone 2-sec-butylcyclohexan-
1-one Cyclohexanone, 2-(1-methylpropyl)-
BUTYLCYCLOHEXAN-1-ONE, 2-SEC-
Cyclohexanone, 2-sec-butyl- | 14765-30-1 | - | - | Suspected skin
sensitiser Suspected toxic
for reporoduction | - | - | | Nitrate NITRAT ION | 14797-55-8 | - | - | Hematologic | May be used
as a food
additive
(soft cheeses,
processed
meats,
fermented
products) | - | Table 3 continued | | | Health assessment | | | Permitted use in Australia | | |---|---------------|--------------------|---
--|----------------------------|----------| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | Menthol Cyclohexanol, 5-methyl- 2-(1-methylethyl)- d,l-Menthol (isomer unspecified) DL-menthol Menthol (unspecified isomer) 2-ISOPROPYL- 5-METHYLCYCLOHEXANOL (USPEC.) Menttooli MENTHOL, DL- I-Menthol 5-Methyl-2-(1-methylethyl)cyclohexanol Menthol racemic (+-)-2-Isopropyl-5- methylcyclohexanol | 1490-04-6 | - | - | Respiratory irritationCytotoxicity | - | - | | p-Dimethoxybenzene
DIMETHYLHYDROQUINONE
1,4-dimethoxybenzene Benzene,
1,4-dimethoxy- BENZENE, 1,4-DIMETOXY-
p-Dimethoxybenzene | 150-78-7 | - | - | - | - | - | | Trifluralin (ISO) Benzenamine, 2,6-dinitro-N,N-dipropyl-4-(trifluoromethyl)- alpha,alpha,alpha-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine a,a,a -trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine 2,6-dinitro-N,N-dipropyl-4-trifluoromethylaniline N,N-dipropyl-2,6-dinitro-4-trifluoromethylaniline trifluralin (ISO) (containing < 0.5 ppm NPDA) | 1582-09-8 | - | - | Hepatic Hematologic Suspected of causing cancer May cause an allergic skin reaction Skin sensitiser Suspected bioaccumulative Suspected mutagen Suspected toxic for reproduction Low dose encodrine disruption | - | - | | 4-Methyl-2-pentyl-1,3-dioxolane
1,3-Dioxolane, 4-methyl-2-pentyl- | 1599-49-1 | - | - | Suspected mutagen Suspected toxic for reproduction | - | - | | p-Orcacetophenone | 1634-34-0 | - | - | - | - | - | Table 3 continued | | | | Health as | sessment | Permitted use in Australia | | |---|------------------|--------------------|---|--|----------------------------|---| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | N-Nitrosonornicotine N'-Nitrosonornicotine
(NNN) and 4-(N-Nitrosomethylamino)-1-(3-
pyridyl)-1-butanone (NNK) | 16543-
55-8 | - | - | Suspected/Reasonably
anticipated to be
carcinogenic Suspected mutagen | - | - | | (E)-2-Methyl-2-pentenoic acid 2-Pentenoic acid, 2-methyl-, (E)- 2-Methyl-2-pentenoic acid TRANS-2-METHYLPENT-2-ENOIC ACID (E)-2-methylpent-2-en-1-oic acid 2-METHYL-2-PENTENOIC ACID, TRANS- 2-Pentenoic acid, 2-methyl-, (2E)- | 16957-
70-3 | - | - | Suspected skin sensitiser | - | Permitted for use only in combination with other permitted ingredients as a flavour. If used in a flavour the total flavour concentration in a medicine must be no more than 5%. | | Cuparene (R)-(+)-p-(1,2,2-
trimethylcyclopentyl)toluene Benzene,
1-methyl-4-(1,2,2-trimethylcyclopentyl)-, (R)- | 16982-
00-6 | - | - | Suspected
bioaccumulative Suspected skin
sensitiser Suspected toxic
for reproduction | - | - | | 2-Phenyl-1,3-dioxan-5-ol 1,3-Dioxan-5-ol,
2-phenyl- | 1708-40-3 | - | - | - | - | - | | 3-Hexenyl acetate Hex-3-enyl acetate
3-Hexen-1-ol, 1-acetate 3-HEXEN-1-OL,
ACETATE | 1708-82-3 | - | - | Suspected skin
sensitiserSuspected toxic
for reporduction | - | - | | MDMB-FUBINACA | 1715016-
77-5 | - | - | - | - | - | | 1,2-Ethanediol, 1-(hydroxymethoxy)- | 1823904-
91-1 | - | - | - | - | - | | a-Decalactone 2(3H)-Furanone,
3-hexyldihydro- 3-Hexyldihydrofuran-2(3H)-
one HEXYLDIHYDROFURANONE ALPHA-
HEXYL-GAMMA-BUTYROLACTONE | 18436-
37-8 | - | - | Suspected skin
sensitiserSuspected toxic
for reproduction | - | - | Table 3 continued | | | | Health as | sessment | Per | mitted use in Australia | |---|-----------------|--------------------|---|--|-----------|---| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | 1-(2-Methoxy-1-methylethoxy)-2-
propanol 1-(2-methoxy-1-methylethoxy)
propan-2-ol 2-PROPANOL,
1-(2-METHOXY-1-METHYLETHOXY)-
DIPROPYLENGLYKOLMETYLETER | 20324-
32-7 | - | - | Suspected toxic for reproduction | - | - | | Isopentyl isobutyrate Propanoic acid,
2-methyl-, 3-methylbutyl ester 3-Methylbutyl
2-methylpropanoate ISOAMYL ISOBUTYRATE | 2050-01-3 | - | - | - | - | - | | Ethanol, 1-(hydroxymethoxy)- | 206360-
28-3 | - | - | - | - | - | | Cocal 5-Methyl-2-phenyl-2-hexenal
5-methyl-2-phenylhex-2-enal
Benzeneacetaldehyde, .alpha(3-
methylbutylidene)- | 21834-
92-4 | - | - | Suspected carcinogenSuspected mutagenSuspected skin irritantSuspected skin sensitiser | - | - | | 2-Acetylpyrazine Acetylpyrazine
METHYL PYRAZINYL KETONE Ethanone,
1-(2-pyrazinyl)- Ethanone, 1-pyrazinyl- | 22047-
25-2 | - | - | Respiratory irritation | - | Permitted for use only in combination with other permitted ingredients as a flavour. If used in a flavour the total flavour concentration in a medicine must be no more than 5%. | | γ-Dodecalactone gamma-Dodecalactone
Dihydro-5-octylfuran-2(3H)-one
2(3H)-Furanone, dihydro-5-octyl- | 2305-05-7 | - | - | - | - | - | Table 3 continued | Chemical name(s) | | Health assessment | | | Per | mitted use in Australia | |---|----------------|--------------------|---|---|-----------|-------------------------| | | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | 2-Buten-1-one, 1-(2,6,6-trimethyl-1,3-cyclohexadien-1-yl)- Damascenone 1-(2,6,6-Trimethylcyclohexa-1,3-dienyl)-2-buten-1-one ROSE KETONE-4 Rose ketone -4 (see note 16) 1-(2,6,6-Trimethylcyclohexa-1,3-dien-1-yl)-2-buten-1-one 1-(2,6,6-trimethyl-1,3-cyclohexadien-1-yl)-2-buten-1-one 4-(2,6,6-TRIMETHYLCYCLOHEXA-1,3-DIENYL)BUT-2-EN-4-ONE BUTEN-1-ONE, 1-(2,6,6-TRIMETHYL-1,3-CYCLOHEXADIEN-1-YL)-, 2- | 23696-
85-7 | - | - | May cause an allergic
skin reaction Suspected carcinogen Suspected mutagen Suspected skin
sensitiser | - | - | | 2-Buten-1-one, 1-(2,6,6-trimethyl-1-cyclohexen-1-yl)-, (Z)- β-Damascone (Z)-beta-1-(2,6,6-Trimethyl-1-cyclohexen-1-yl)-2-buten-1-one CIS-ROSE KETONE-2 (Z)1-(2,6,6-Trimethyl-1-cyclohexen-1-yl)-2-buten-1-one (cis-beta-Damascone) (Z)-1-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2-buten-1-one 4-(2,6,6-TRIMETHYLCYCLOHEX-1-ENYL)BUT-2-EN-4-ONE 2-Buten-1-one, 1-(2,6,6-trimethyl-1-cyclohexen-1-yl)-, (2Z)- TRIMETHYL-1-CYCLOHEXEN-1-YL)-2-BUTEN-1-ONE, (Z)-1-(2,6,6- beta-Damascone, (Z)- | 23726-
92-3 | - | - | May cause an allergic
skin reaction Suspected carcinogen Suspected mutagen Suspect skin sensitiser | - | - | | (R)-(+)-Citronellal (R)-3,7-dimethyloct-6-enal
 6-Octenal, 3,7-dimethyl-, (3R)- Citronellal | 2385-77-5 | - | - | - | - | - | | Hedione Methyl dihydrojasmonate METHYLDIHYDROJASMONATE Methyl 3-oxo-2-pentylcyclopentaneacetate Cyclopentaneacetic acid, 3-oxo-2-pentyl-, methyl ester Sodium Tetrahydrojasmonate 3-OXO-2-PENTYLCYCLOPENTANEDDIKESYRE, METHYL ESTER CYCLOPENTANEDDIKSYRE, 3-OKSO-2-PENTYL-, METYL ESTER | 24851-
98-7 | - | - | - | - | - | Table 3 continued | Chemical name(s) | | | Health as | sessment | Per | mitted use in Australia | |---|----------------|--------------------|---|---|-----------
--| | | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | Dipropylene glycol Propanol, oxybis- Dipropylene glycol (isomer unspecified) Oxydipropanol DIPROPYLENGLYCOL Oksidipropanoli DIPROPYLENGLYKOL Propanol, oxybis 1,1'- oxybis-2-propanol 2-Propanol, 1,1'-oxybis- Bis(2-hydroxypropyl) ether | 25265-
71-8 | - | - | - | - | - | | Diacetin 1,2,3-Propanetriol,
diacetate Glycerol 1,3-di(acetate)
GLYCEROL DIACTATE DIACETIN (USPEC.)
PROPANTRIOL, 1,2,3-, DIACETAT | 25395-31-7 | - | - | Suspected mutagen Suspected toxic for reproduction | - | - | | Amyl isovalerate Butanoic acid, 3-methyl-,
pentyl ester Pentyl isovalerate
Isoamyl isovalerate n-Pentyl valerate
Pentanoic acid, pentyl ester | 25415-
62-7 | - | - | Suspescted skin
sensitiser | - | Permitted for use only in combination with other permitted ingredients as a flavour or a fragrance. If used in a flavour the total flavour concentration in a medicine must be no more than 5%. If used in a fragrance the total fragrance concentration in a medicine must be no more 1%. | | Benzaldehyde propylene glycol acetal
BENZALDEHYDE PROPYLENEGLYCOL
ACETAL 4-methyl-2-phenyl-1,3-dioxolane
1,3-Dioxolane, 4-methyl-2-phenyl- | 2568-25-4 | - | - | Suspected acutely toxic
via the oral route Suspected mutagen | - | - | | Hexyl butanoate Butanoic acid, hexyl ester | 2639-63-6 | - | - | Suspected skin senitiser | - | - | | Glyceryl monocaprate Decanoic acid,
monoester with 1,2,3-propanetriol GLYCERYL
CAPRATE Decanoic acid, monoester with
glycerol Dodecanoic acid, monoester with
1,2,3-propanetriol Glycerol monolaurate | 26402-
22-2 | - | - | Suspected skin sensitiser | - | - | Table 3 continued | | | | Health as | sessment | Per | mitted use in Australia | |--|----------------|--------------------|---|--|-----------|-------------------------| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | Dicyclopentenyl alcohol 3a,4,5,6,7,7a-hexahydro-4,7-methano-1H-indenol 4,7-Methano-1H-indenol, 3a,4,5,6,7,7a-hexahydro- | 27137-33-3 | - | - | Suspected skin
sensitiserSuspected toxic
for reproduction | - | - | | δ-Tetradecalactone delta-Tetradecalactone
Tetrahydro-6-nonyl-2H-pyran-2-one
2H-Pyran-2-one, tetrahydro-6-nonyl- | 2721-22-4 | - | - | Suspected skin sensitiser | - | - | | N'-Nitrosoanatabine (NAT) | 2743-90-0 | - | - | - | - | - | | Homocamfin | 28587-71-5 | - | - | - | - | - | | 3-Thujene 5-isopropyl-2-methylbicyclo[3.1.0] hex-2-ene Bicyclo[3.1.0]hex-2-ene, 2-methyl-5-(1-methylethyl)- | 2867-05-2 | - | - | - | - | - | | chlorpyrifos O,O-diethyl O-3,5,6-trichloro-2-pyridyl phosphorothioate Chlorpyrifos ethyl Chlorpyrifos (ISO) O,O-diethyl O-(3,5,6-trichloro-2-pyridyl) thiophosphate Chlorpyrifos Phosphorothioic acid O,O-diethyl O-(3,5,6-trichloro-2-pyridinyl) ester O,O-diethyl O-3,5,6-trichloro-2-pyridyl phosphorothioate O,O-Diethyl O-(3,5,6-trichloropyridin-2-yl) phosphorothioate | 2921-88-2 | - | Suspected | Neuro Toxic if swallowed Suspected bioaccumulative Suspected mutagen Suspected skin sensitiser Low dose endocrine disruption | - | - | | γ-Muurolene | 30021-
74-0 | - | - | - | - | - | | decanoic acid Capric acid DECANOIC ACID
1-Nonanecarboxylic acid Caprinic acid
Decylic acid n-Decanoic acid Decanoic acid,
sodium salt sodium salt of capric acid | 334-48-5 | - | - | Causes skin irritation Causes serious
eye irritation Suspected skin
sensitiser | - | - | | p-Menthane-1,2-diol | 33669-
76-0 | - | - | - | - | - | Table 3 continued | | | | Health as | sessment | Permitted use in Australia | | |--|----------------|--------------------|---|--|----------------------------|----------| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | Sabinene Thuj-4(10)-ene Bicyclo[3.1.0]
hexane, 4-methylene-1-(1-methylethyl)-
BICYCLO(3.1.0)HEXANE, 4-METHYLENE-1-(1-
METHYLETHYL)- | 3387-41-5 | - | - | Suspected skin sensitiser | - | - | | 2-Isopropyl-5-methyl-2-hexenal
ISOPROPYLMETHYLHEXENAL 2-isopropyl-
5-methylhex-2-enal 2-Hexenal, 5-methyl-2-(1-
methylethyl)- | 35158-
25-9 | - | - | Suspected carcinogen Suspected skin irritant Suspected skin sensitiser Suspected toxic for reproduction | - | - | | Neomenthol Cyclohexanol, 5-methyl-2-(1-methylethyl)-, (1R,2R,5S)-rel- dl-Neomenthol (±)-neomenthol Cyclohexanol, 5-methyl-2-(1-methylethyl)-, (1.alpha.,2.alpha.,5.beta.)-(.+)- | 3623-51-6 | - | - | Suspected skin
sensitiserSuspected toxic
for reproduction | - | - | | Isomenthol Cyclohexanol, 5-methyl-2-(1-methylethyl)-, (1R,2S,5S)-rel- (±)-isomenthol Cyclohexanol, 5-methyl-2-(1-methylethyl)-, (1.alpha.,2.beta.,5.beta.)-(.+)- DL-ISOMENTHOL | 3623-52-7 | - | - | Suspected skin
sensitiserSuspected toxic
for reproduction | - | - | | Theaspirane TETRAMETHYL-1-OXASPIRO-6-DECENE 2,6,10,10-tetramethyl-1-oxaspiro[4.5] dec-6-ene 1-Oxaspiro[4.5]dec-6-ene, 2,6,10,10-tetramethyl- | 36431-
72-8 | - | - | Suspected
bioaccumulative Suspected skin
sensitiser Suspected toxic
for reproduction | - | - | | Furaneol 4-Hydroxy-2,5-dimethyl-3(2H)- furanone DIMETHYLHYDROXY FURANONE 4-hydroxy-2,5-dimethylfuran-2(3H)-one 3(2H)-Furanone, 4-hydroxy-2,5-dimethyl- 3(2H)-FURANONE,4-HYDROXY-2,5-DIMETHYL 4-Hydroxy-2,5-dimethyl-3-(2H) furanone Pineapple ketone | 3658-77-3 | - | - | Suspected acutely toxic
via the oral route Suspected carcinogen Suspected mutagen | - | - | Table 3 continued | | | | Health as | sessment | Per | Permitted use in Australia | | |---|---------------|--------------------|---|---|-----------|---|--| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | | 2,3-Hexanedione METHYL PROPYL
DIKETONE Hexane-2,3-dione | 3848-24-6 | - | - | Suspected mutagen Suspected skin
sensitiser Suspected toxic
for reproduction | - | Permitted for use only in combination with other permitted ingredients as a flavour. If used in a flavour the total flavour concentration in a medicine must be no more than 5%. | | | 1-Propen-1-ol | 3965-44-4 | - | - | - | - | - | | | Crotonaldehyde 2-butenal But-2-enal (E) -crotonaldehyde trans-But-2-enal; ACROLEIN 2-BUTENAL b-Methyl acrolein Crotonic aldehyde beta-Methyl acrolein Propylene aldehyde | 4170-30-3 | Yes (fatal) | - | Toxic if swallowed Toxic in contact with skin Causes skin irritation Causes serious eye damage May cause genetic deffects May cause respiratory irritation May cause damage to organs through prolonged or repeated exposure Mutagenic Acute toxicity | - | | | Table 3 continued | | | | Health as | sessment | Perr | nitted use in Australia | |---|----------------|---|---|--|-----------
--| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | 2-Buten-1-one, 1-(2,6,6-trimethyl-2-cyclohexen-1-yl)- a-Damascone alpha-1-(2,6,6-Trimethyl-2-cyclohexen-1-yl)-2-buten-1-one ALPHA-DAMASCONE cis -Rose ketone-1 (Z)-1-(2,6,6-Trimethyl-2-cyclohexen-1-yl)-2-buten-1-one (cis-alpha-Damascone) Damascone, alpha- BUTEN-1-ONE, 1-(2,6,6-TRIMETHYL-2-CYCLOHEXEN-1-YL)-, 2- alpha-1-(2,6,6-Trimethyl-2-cyclohexen-1-yl)-2-buten-1-one | 43052-
87-5 | - | - | Harmful if swallowed May cause an allergic
skin reaction | - | Permitted for use only in combination with other permitted ingredients as a flavour or a fragrance. If used in a flavour the total flavour concentration in a medicine must be no more than 5%. If used in a fragrance the total fragrance concentration in a medicine must be no more 1%. | | Diacetyl (2,3-Butanedione) Diacetyl
Butanedione 2,3-Butanedione BUTANDION
BUTANEDIONE, 2,3- | 431-03-8 | Yes
(irreversible
lung
damage) | - | Suspected acutely toxic via the oral route Suspected carcinogen Suspected mutagen Suspected skin sensitiser Irritation | - | - | | Difurfuryl disulfide 2,2'-(Dithiodimethylene)-difuran 2,2'-[dithiobis(methylene)]bisfuran Furan, 2,2'-[dithiobis(methylene)]bis- | 4437-20-1 | - | - | Suspected mutagenSuspected skin
sensitiser | - | - | | 3,4-Hexanedione Hexane-3,4-dione | 4437-51-8 | - | - | Suspected mutagen Suspected skin
sensitiser Suspected toxic
for reproduction | - | - | Table 3 continued | | | Health assessment | | | Permitted use in Australia | | |---|---------------|--------------------|---|--|----------------------------|----------| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | Nootkanone Nootkatone [4R-(4a,4aa,6ß)]-4,4a,5,6,7,8-hexahydro-4,4a-dimethyl-6-(1-methylvinyl)naphthalen-2(3H)-one 2(3H)-Naphthalenone, 4,4a,5,6,7,8-hexahydro-4,4a-dimethyl-6-(1-methylethenyl)-, (4R,4aS,6R)- 2(3H)-Naphthalenone, 4,4a,5,6,7,8-hexahydro-4,4a-dimethyl-6-(1-methylethenyl)-, [4R-(4.alpha.,4a. alpha.,6.beta.)]- 2(3H)-NAPHTHALENONE, 4,4A,5,6,7,8-HEXAHYDRO-4,4A-DIMETHYL-6-(1-METHYLETHENYL)-, (4R-(4.ALPHA.,4A. ALPHA.,6.BETA.))- | 4674-50-4 | - | - | Suspected bioaccumulative Suspected carcinogen Suspected skin sensitiser Suspected toxic for reproduction | - | - | | a-Cedrene alpha-Cedrene [3R-(3a,3aß,7ß,8aa)]-2,3,4,7,8,8a- hexahydro-3,6,8,8-tetramethyl-1H-3a,7- methanoazulene 1H-3a,7-Methanoazulene, 2,3,4,7,8,8a-hexahydro-3,6,8,8-tetramethyl-, [3R-(3a,3aβ,7β,8aa)]- CEDR-8-ENE 1H-3a,7- Methanoazulene, 2,3,4,7,8,8a-hexahydro- 3,6,8,8-tetramethyl-, (3R,3aS,7S,8aS)- 1H-3A,7-METHANOAZULENE, 2,3,4,7,8,8A-HEXAHYDRO-3,6,8,8- TETRAMETHYL-, (3R-(3.ALPHA.,3A. BETA.,7.BETA.,8A.ALPHA.))- 1H-3a,7- Methanoazulene, 2,3,4,7,8,8a-hexahydro- 3,6,8,8-tetramethyl-, [3R-(3 1H-3A,7-METHANOAZULENE,2,3,4,7,8,8A- HEXAHYDRO-3,6,8,8-TETRAMETHYL-,(3R-(3. ALPHA.,3A.BETA.,7.BETA.,8A.APLHA.)) alpha-Cedrene | 469-61-4 | | | Suspected bioaccumulative Suspected skin sensitiser | - | | Table 3 continued | | | | Health as | sessment | Permitted use in Australia | | |--|---------------|--------------------|---|---|----------------------------|----------| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | 1,8-Cineol 1,3,3-Trimethyl-2-oxabicyclo[2.2.2] octane; 1,8-Epoxy-p-menthane Eucalyptol Cineole 2-Oxabicyclo[2.2.2]octane, 1,3,3-trimethyl- 1,3,3-TRIMETHYL-2-OXABICYCLO(2.2.2)OCTAN CINEOLE, 1,8- 1,8-Cineole 2-Oxabicyclo(2.2.2)octane, 1,3,3-trimethyl- p-Menthane, 1,8-epoxy- | 470-82-6 | - | - | - | - | - | | Pentaethylene glycol
3,6,9,12-Tetraoxatetradecane-1,14-diol
TETRAOXATETRADECANE-1,14-DIOL, 3,6,9,12- | 4792-15-8 | - | - | Suspected carcinogen Suspected skin
sensitiser Suspected toxic
for reproduction | - | - | | δ-Cadinene | 483-76-1 | - | - | - | - | - | | Cadalene | 483-78-3 | - | - | Suspected bioaccumulative Suspected mutagen Suspected skin sensitiser Suspected toxic for reproduction | - | - | | anabasine | 494-52-0 | - | - | Suspected acutely toxic via the oral route Suspected skin irritant Suspected toxic for reproduction | - | - | Table 3 continued | | | | Health as | sessment | Permitted use in Australia | | |--|---------------|--------------------|---|--|----------------------------|----------| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | Formaldehyde formaldehyde (R1) formaldehyde solution Formalin Formic aldehyde Methaldehyde Formaldehyde (h) FORMALDEHYD Methan 21 Methanal Methyl aldehyde Methylene oxide | 50-00-0 | Yes (fatal) | - | Gastrointestinal Urinary Respiratory carcinogenic, mutagenic, reprotoxic (CMR) Toxic if swallowed Toxic in contact with skin Causes severe skin burns and eye damage May cause an allergic skin reaction May cause cancer by inhalation Acute toxicity (inhalation, dermal and oral) Skin sensitiser Skin corrosion | - | - | | Hydrocinnamic acid 3-Phenylpropionic acid
Benzenepropanoic acid
BENZENPROPANOIC ACID | 501-52-0 | - | - | Suspected skin
sensitiserSuspected toxic
for reproduction | - | - | | 1,3-Propanediol PROPANEDIOL Propane-1,3-diol propan-1,3-diol 1,3-Dihydroxypropane 1,3-Propylenediol 1,3-Propylene glycol 2-Deoxyglycerol beta-Propylene glycol omega-Propanediol Trimethylene glycol | 504-63-2 | - | - | - | - | - | | Sorbitol D-Glucitol d-Sorbitol | 50-70-4 | - | - | - | - | - | | D-Glucose GLUCOSE dextrose Glukoosi
GLYKOSE | 50-99-7 | - | - | - | - | - | Table 3 continued | | | | Health as | sessment | Permitted use in Australia | | | |---|---------------|---|---|--|----------------------------|--|--| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | | Acetoin 3-Hydroxy-2-butanone 2-Butanone,
3-hydroxy- 3-HYDROXY-2-BUTANON
Acetoin | 513-86-0 | Yes
(irreversible
lung
damage) | - | Irritation | - | Permitted for use only in combination with other permitted ingredients as a flavour or a fragrance. If used in a flavour the total flavour concentration in a medicine must be no more than 5%. If used in a fragrance the total fragrance concentration in a medicine must be no more 1%. | | | β-Bourbonene | 5208-59-3 | - | - | Suspected bioaccumulative Suspected skin sensitiser | - | - | | | β-Cadinene | 523-47-7 | - | - | - | - | - | | | o-Methylbenzaldehyde O-TOLUALDEHYDE
2-tolualdehyde TOLUALDEHYDE, O- | 529-20-4 | - | - | Suspected acutely toxic via the oral route Suspected carcinogen Suspected skin sensitiser Suspected toxic for reproduction | - | - | | | Myosmine | 532-12-7
| - | - | - | - | - | | | 2-Methylfuran Furan, 2-methyl- | 534-22-5 | - | - | Suspected carcinogen | - | - | | Table 3 continued | | | Health assessment | | | Permitted use in Australia | | | |--|---------------|--------------------|---|---|----------------------------|--|--| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | | Citral 2,6-Octadienal, 3,7-dimethyl-
 3,7 -Dimethyl-2,6-octadienal
OCTADIENAL, 3,7-DIMETYL-2,6- | 5392-40-5 | - | - | Causes skin irritation May cause an allergic skin reaction Skin sensitisation | - | Only for use in medicines in combination with other permitted ingredients as a fragrance proprietary excipient formulation. The total fragrance proprietary excipient formulation in a medicine must not be more than 1%. | | | Ethyl 3-hydroxybutanoate
Ethyl 3-hydroxybutyrate Butanoic acid,
3-hydroxy-, ethyl ester | 5405-41-4 | - | - | Suspected toxic for reproduction | - | - | | | Nicotine 3-(N-methyl-2-pyrrolidinyl)pyridine 3-[(2S)-1-methylpyrrolidin-2- yl]pyridine Nicotine and its salts Pyridine, 3-[(2S)-1-methyl-2-pyrrolidinyl]- NICOTIN nicotine (ISO) 3-[(2S)-1-methylpyrrolidin-2-yl]pyridine METYLPYROLLIDINO)PYRIDIN, 3-(N- 3-(1-Methyl-2-pyrrolidinyl)pyridine Nicotine alkaloid Pyridine, 3-(1-methyl-2-pyrrolidinyl)-, (S)- 3-(1-Methyl-2-pyrrolidyl)pyridine | 54-11-5 | Yes (fatal) | - | Fatal in contact with skin Fatal if swallowed Acute toxicity Suspected mutagen Suspected toxic for reproduction | - | - | | | Thujon a-Thujone ISOPROPYL- METHYLBICYCLOHEXANONE 1-isopropyl- 4-methylbicyclo[3.1.0]hexan-3-one Bicyclo[3.1.0]hexan-3-one, 4-methyl-1-(1- methylethyl)-, [1S-(1a,4a,5a)]- THUJONE Bicyclo[3.1.0]hexan-3-one, 4-methyl-1-(1- methylethyl)-, (1S,4R,5R)- BICYCLO(3.1.0) HEXAN-3-ONE, 4-METHYL-1-(1- METHYLETHYL)-, (1S-(1.ALPHA.,4.ALPHA.,5. ALPHA.))- Bicyclo[3.1.0]hexan-3-one, 4-methyl-1-(1-methylethyl)-, [1S-(1 Thujone | 546-80-5 | - | - | Suspected skin sensitiser Suspected toxic for reproduction | - | Mandatory component of artemisia type chemicals | | Table 3 continued | | | | Health as | sessment | Permitted use in Australia | | | |---|---------------|--------------------|---|---|----------------------------|----------|--| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | | Raspberry ketone 4-(p-Hydroxyphenyl)-
2-butanone 4-(4-hydroxyphenyl)butan-2-
one 2-Butanone, 4-(4-hydroxyphenyl)-
BUTANONE, 4-(4-HYDROXYPHENYL)-2- | 5471-51-2 | - | - | - | - | - | | | Carane | 554-59-6 | - | - | - | - | - | | | 2,3-epoxypropan-1-ol glycidol oxiranemethanol Glycidol 2,3-Epoxy-1-propanol 2-Oxiranemethanol EPOKSY-1-PROPANOL, 2,3- Epoxypropyl alcohol Glycide Hydroxymethyl ethylene oxide 2-Hydroxymethyl oxiran 3-Hydroxypropylene oxide | 556-52-5 | Yes (fatal) | - | Harmful if swallowed Harmful in contact with skin May cause cancer/Carcinogenic May cause genetic defects Causes serious eye irritation Causes skin irritation May cause respiratory irritation May damage fertility Acute toxicity (inhalation, dermal and oral) Mutagenic | - | - | | | octamethylcyclotetrasiloxane Octamethylcyclotetrasiloxane (D4) octamethylcyclotetra siloxane Octamethyl-cyclotetrasiloxane Octamethyl-cyclotetrasiloxane Cyclotetrasiloxane, octamethyl- 2,2,4,4,6,6,8,8-Octamethylcyclotetrasiloxane CYCLOMETHICONE CYCLOTETRASILOXANE Cyclotetrasiloxane, 2,2,4,4,6,6,8,8-octamethyl- Octamethylcyclotetra-siloxane (D4) Octamethylcyclotetrasiloxane Octamethylcyclotetrasiloxane OCTAMETHYLCYCLOTETRASILOXAN Cyclosiloxanes, di-Me Dimethyl cyclosiloxanes Cyclic dimethylsiloxane tetramer | 556-67-2 | - | - | Bioaccumulation Suspected of damaging fertility Low dose endocrine disruption Persistence (undisclosed) | - | - | | Table 3 continued | | | | Health as | sessment | Permitted use in Australia | | |--|---------------|--------------------|---|---|--|----------| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | Glycerol 1,2,3-Propanetriol GLYCERIN GLYCERIN, NATURAL Glyseroli PROPANTRIOL, 1,2,3- Glycerin mist Glycerine Synthetic glycerine Vegetable Glycerin Glycerin (anhydrous) Glycyl alcohol Trihydroxypropane | 56-81-5 | - | - | - | - | - | | Glyceraldehyde DL-glyceraldehyde
Propanal, 2,3-dihydroxy- | 56-82-6 | - | - | Suspected carcinogen Suspected skin
sensitiser Suspected toxic
for reproduction | - | - | | (R)-3-(pyrrolidin-2-yl)pyridine | 5746-86-1 | - | - | Suspected acutely toxic via the oral route Suspected toxic for reproduction | - | - | | D-Fructose FRUCTOSE LEVULOSE
FRUKTOSE | 57-48-7 | - | - | - | - | - | | Sucrose alphaD-Glucopyranoside, .betaD-fructofuranosyl SATURATED SUCROSE SACCHAROSE Sukroosi, puhdas SUKKER D(+)-Sucrose Sugar (D(+)-Sucrose) Invert sugar Invert syrup alpha-D-Glucopyranoside, beta-D-fructofuranosyl- Glucopyranoside, beta-D-fructofuranosyl, alpha-D Sugar Beet sugar Cane sugar Confectioner's sugar Granulated sugar Rock candy Saccarose Table sugar | 57-50-1 | - | - | - | May be used in food | - | | Propylene glycol Propane-1,2-diol (Propylene glycol) 1,2-Propanediol PROPYLENGLYCOL Propaani-1,2-dioli PROPANDIOL, 1,2- alpha-Hydro-omega-hydroxypoly(oxy(methyl-1,2-ethanediyl)) alpha-Hydro-omega-hydroxypoly(oxypropylene) | 57-55-6 | - | - | Respiratory | May be used
as a food
additive
(unprocessed
fruit and
vegetables) | - | Table 3 continued | | CAS
number | | Health as | sessment | Perr | nitted use in Australia | |--|---------------|---|---|--|--------------------------------------|---| | Chemical name(s) | | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | caffeine 1H-Purine-2,6-dione, 3,7-dihydro-
1,3,7-trimethyl- BROMIDES COFFEIN
KOFFEIN 1,3,7-Trimethyl-2,6-dioxopurine
1,3,7-Trimethylxanthine 7-Methyltheophylline
Caffein | 58-08-2 | - | - | Harmful if swallowed Acute Toxicity | May be used
as a food
additive | - | | 2,3'-bipyridine | 581-50-0 | - | - | Suspected mutagenSuspected toxic for reproduction | - | - | | Cyclohexene, 1-methyl-4-(1-methylethylidene)-
 a-Terpinolene Terpinolene Terpinolene;
p -Mentha-1,4(8)-diene p-mentha-1,4(8)-
diene TERPINOLEN Syklohekseeni,
1-metyyli-4-(1-metyylietylideeni)- METYL-
4-(1-METYLETYLIDEN)CYKOLHEKSEN,1-
4-Isopropylidene-1-methylcyclohexene
Isoterpinene Terpinolene 90 | 586-62-9 | Yes
(may be
fatal) | - | May be fatal if
swallowed May cause an
allergic
skin reaction | - | - | | Isovaleric aldehyde 3-Methylbutanal
3-Methylbutyraldehyde ISOPENTANAL
 Butanal, 3-methyl- Isovaleraldehyde
Isovaleraldehydi | 590-86-3 | - | - | - | - | - | | Lactaldehyde | 598-35-6 | - | - | - | - | - | | Acetylpropionyl (2,3-Pentanedione) Acetyl propionyl (2,3-Pentanedione) Acetyl propionyl PENTANEDIONE Pentane-2,3-dione 2,3-Pentanedione Pentanedione, 2,3- | 600-14-6 | Yes
(irreversible
lung
damage) | - | Suspected mutagen Suspected skin sensitiser Cytotoxicity Irritation | - | Permitted for use only in combination with other permitted ingredients as a flavour or a fragrance. If used in a flavour the total flavour concentration in a medicine must be no more than 5%. If used in a fragrance the total fragrance concentratio in a medicine must be no more 1%. | Table 3 continued | Chemical name(s) | | | Health as | sessment | Permitted use in Australia | | |--|----------------|--------------------|---|--|----------------------------|----------| | | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | Benzeneethanol Phenethyl alcohol beta-Phenylethyl alcohol phenylethyl alcohol 2-phenylethanol Fenyylietanoli BENZENETANOL 2-Phenylethyl alcohol beta-Hydroxyethylbenzene beta-Phenethyl alcohol betaPhenylethanol Phenyl ethyl alcohol | 60-12-8 | - | - | Harmful if swallowed Causes serious eye damage | - | - | | acetamide ACETAMID | 60-35-5 | - | - | Suspected of causing cancer | - | - | | 2-Nitrothiophene Thiophene, 2-nitro- | 609-40-5 | - | - | Suspected carcinogen Suspected mutagen | - | - | | Piperonal propylene glycol acetal
5-(4-methyl-1,3-dioxolan-2-yl)-1,3-
benzodioxole 1,3-Benzodioxole,
5-(4-methyl-1,3-dioxolan-2-yl)- | 61683-
99-6 | - | - | Suspected carcinogen | - | - | | 5-Methylfurfural METHYLFURFURAL
2-Furancarboxaldehyde, 5-methyl- | 620-02-0 | - | - | Suspected carcinogenSuspected skin sensitiser | - | - | | m-Methylbenzaldehyde Benzaldehyde,
3-methyl- M-TOLUALDEHYDE
TOLUALDEHYDE, M- | 620-23-5 | - | - | Suspected acutely toxic via the oral route Suspected carcinogen Suspected toxic for reproduction | - | - | | 1,2-Propanediol, 2-acetate | 6214-01-3 | - | - | - | - | - | | Isovanillin 3-hydroxy-p-anisaldehyde
Benzaldehyde, 3-hydroxy-4-methoxy- | 621-59-0 | - | - | Suspected carcinogen | - | - | | 2-Methylbutyrate Methyl butanoate
Butanoic acid, methyl ester Methyl butyrate
METHYLBUTYRAT | 623-42-7 | - | - | Suspected skin sensitiser | - | - | Table 3 continued | | | | Health as | sessment | Per | mitted use in Australia | |---|---------------|--------------------|---|---|-----------|---| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | 2-methylbutyl acetat 2-Methylbutyl acetate 1-Butanol, 2-methyl-, 1-acetate AMYL ACETATE 2-METHYLBUTYLACETAT 2-methylbutyl acetat [4] METYLBUTYLACETAT, 2- Acetic acid 2-methylbutyl ester | 624-41-9 | - | - | Suspected carcinogen Suspected skin sensitiser | - | Only for use in: - topical medicines for dermal application; or - combination with other permitted ingredients as a flavour proprietary excipient formulation. The total flavour proprietary excipient formulation in a medicine must not be more than 5%. | | 2-Methyl-1,3-dioxane | 626-68-6 | - | - | - | - | - | | Dimethylnitrosoamine (DMNA) N-nitrosodimethylamine (NDMA) Methanamine, N-methyl-N-nitroso- N,N-Dimethylnitrosamine Nitrosamines Nitrosodipropylamine 2,2' - (Nitrosoimino) bisethanol N-NITROSODIMETHYLAMINE N-Nitrosodimethylamine AMINES N-NITROSODIMETHYLAMIN N-Methyl- N-nitroso-methanamine N-Nitroso- N,N-dimethylamine Nitrosamines N-Nitrosodimethylamine | 62-75-9 | Yes (fatal) | - | Probably carcinogenic Toxic if swallowed Causes damage
to organs through
prolonged or
repeated exposure Suspected mutagen Suspected skin
sensitiser Acute toxicity | - | - | | Ethyl hexadecanoate Ethyl palmitate
OMEGA-3-ACID ETHYL ESTERS
Hexadecanoic acid, ethyl ester Palmitic acid,
ethyl ester | 628-97-7 | - | - | Suspected skin sensitiser | - | - | | Hexamethylenediol 1,6-Hexanediol HEXANEDIOL Hexane-1,6-diol HEXAMETHYLENE GLYCOL hexan-1,6-diol HEKSANDIOL, 1,6- | 629-11-8 | - | - | - | - | - | Table 3 continued | | | | Health as | sessment | Per | mitted use in Australia | |--|----------------|--------------------|---|--|-----------|-------------------------| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | Hexadecanal | 629-80-1 | - | - | Suspected carcinogenSuspected mutagenSuspected skin
sensitiser | - | - | | 4-Chloro-2,5-dimethoxyaniline
Benzenamine, 4-chloro-2,5-dimethoxy- | 6358-64-1 | - | - | - | - | - | | Hexyl hexanoate Hexanoic acid, hexyl ester | 6378-65-0 | - | - | Suspected skin sensitiser | - | - | | Octadecanal Stearaldehyde | 638-66-4 | - | - | Suspected carcinogenSuspected skin
sensitiser | - | - | | Elemol ALPHA,ALPHA-DIMETHYL-VINYL-O-MENTHENEMETHANOL (1S,2S,4R)-(-)-a,a-dimethyl-1-vinyl-o-menth-8-ene-4-methanol Cyclohexanemethanol, 4-ethenyl-α,α,4-trimethyl-3-(1-methylethenyl)-, [1R-(1α,3α,4β)]- Cyclohexanemethanol, 4-ethenylalpha.,.alpha.,4-trimethyl-3-(1-methylethenyl)-, (1R,3S,4S)- CYCLOHEXANEMETHANOL, 4-ETHENYLALPHA.,.ALPHA.,4-TRIMETHYL-3-(1-METHYLETHENYL)-, (1R-(1.ALPHA.,3.ALPHA.,4.BETA.))- CYCLOHEXANEMETHANOL, 4-ETHYL-ALFA,ALFA,4-TRIMETHYL-3-(1-METHYLETHENYL)- (1R,3S,4S)- Elemol | 639-99-6 | - | - | Suspected bioaccumulative Suspected skin irritant Suspected skin sensitiser Suspected toxic for reproduction | | | | 4-(N-Nitrosomethylamino)-1-(3-pyridyl)-1-butanone Nitrosamines N-nitrosodiethanolamine N'-Nitrosonornicotine (NNN) and 4-(N-Nitrosomethylamino)-1-(3-pyridyl)-1-butanone (NNK) | 64091-
91-4 | - | - | Carcinogenic* Suspected carcinogen* (*divergent assessments) Suspected mutagen | - | - | Table 3 continued | | | | Health as | sessment | Perr | nitted use in Australia | |--|---------------|--------------------|---
--|--|-------------------------| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | p-Anisaldehyde propylene glycol acetal
2-(4-methoxyphenyl)-4-methyl-1,3-dioxolane | 6414-32-0 | - | - | Suspected mutagen | - | - | | Ethanol Ethyl alcohol ALCOHOL DENAT
ALCOHOL ethanol ethyl alcohol ETANOL
 Alcohol (ethyl) EtOH Grain alcohol
Ethanol in alcoholic beverages | 64-17-5 | - | - | Carcinogenic Causes serious eye irritation | May be used
as a food
additive
(flavouring;
colouring) | - | | Formic acid Formic acid and its sodium salt FORMIC ACID / SODIUM FORMATE MYRESYRE MAURSYRE Formic acid, zinc salt Zinc formate Ammonium formate Formic acid, ammonium salt Hydrogen carboxylic acid Methanoic acid | 64-18-6 | Yes | - | Bioaccumulation Index of the property | - | - | | acetic acid Acetic acid EDDIKESYRE
EDDIKSYRE Ethanoic acid Glacial acetic acid
 Methanecarboxylic acid | 64-19-7 | - | - | Causes severe skin
burns and eye damageSkin corrosionSkin irritationEye irritation | May be used
as a food
additive | - | | Isoamyl isovalerate Isoamyl isobutyrate
Butanoic acid, 3-methyl-, 3-methylbutyl ester
3-methylbutyl isovalerate BUTANOIC ACID,
3-METHYL-3-METHYLBUTYL-ESTHER
n-Pentyl valerate Pentanoic acid, pentyl ester | 659-70-1 | - | - | - | - | - | | Hexaldehyde Hexanal Aldehyde C6 | 66-25-1 | - | - | - | - | - | | | | | | | | | Table 3 continued | Chemical name(s) | | | Health as | sessment | Perr | nitted use in Australia | |---|---------------|--------------------|---|--|--|-------------------------| | | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | 2-Hexenal, (E)- Leaf aldehyde Hexen-2-al
TRANS-2-HEXENAL trans -2-hexenal trans-
hex-2-enal 2-HEXENAL, TRANS- ACROLEIN
 HEKSENAL, trans-2- (E)-2-Hexen-1-al | 6728-26-3 | - | - | Harmful if swallowed Toxic in contact with skin May cause an allergic skin reaction Suspected carcinogen Suspected mutagen Suspected skin irritant Suspected skin sensitiser | - | - | | 5-Hydroxymethylfurfurol 5-(hydroxymethyl)-
2-furaldehyde 2-Furancarboxaldehyde,
5-(hydroxymethyl)- | 67-47-0 | - | Suspected | Suspected carcinogenSuspected mutagenSuspected skin
sensitiser | - | - | | methanol methanol (R1) METHYL ALCOHOL
 METANOL Carbinol Wood alcohol
Wood naphtha | 67-56-1 | Yes | - | Suspected carcinogenic, mutagenic, reprotoxic (CMR) Developmental Nervous Suspected CMR Toxic in contact with skin Toxic if swallowed Causes damage to organs Acute Toxicity (Inhalation, dermal and oral) | - | - | | propan-2-ol isopropyl alcohol isopropanol
2-Propanol Propan-2-ol propan-2-ol
isopropyl alcohol isopropanol PROPANOL,
2- Dimethyl carbinol IPA sec-Propyl alcohol
 Rubbing alcohol | 67-63-0 | - | - | Causes serious
eye irritationMay cause drowsiness
or dizziness | May be used
as a food
additive
(flavouring) | - | Table 3 continued | | | | Health as | sessment | Permitted use in Australia | | |--|----------------|--------------------|---|---|----------------------------|---| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | Acetone propan-2-one propanone
2-Propanone acetone propan-2-one
propanone ACETON Dimethyl ketone
Ketone propane | 67-64-1 | - | - | Neuro Urinary Hematologic Causes serious eye irritation May cause drowsiness or dizziness Repeated exposure may cause skin dryness and cracking | - | The residual solvent limit for Acetone is 50 mg per maximum recommended daily dose. The concentration in the medicine must be no more than 0.5%. | | Ethylvanillin propylene glycol acetal
Ethyl vanillin propylene glycol acetal Phenol,
2-ethoxy-4-(4-methyl-1,3-dioxolan-2-yl)- | 68527-
76-4 | - | - | - | - | - | | y-Hexalactone gamma-Hexalactone GAMMA-CAPROLACTONE Hexan-4-olide 2(3H)-Furanone, 5-ethyldihydro- GAMMA- CAPROLACTON 2(3H)-FURANONE,5- ETHYLDIHYDRO- 5-Ethyltetrahydro-2- furanone 6-Caprolactone Furanone, 5-ethyldihydro-2(3H)- | 695-06-7 | - | - | Suspected mutagenSuspected skin sensitiser | - | - | | δ-Decalactone delta-Decalactone Decan-5-
olide 2H-Pyran-2-one, tetrahydro-6-pentyl-
delta-Decalactone | 705-86-2 | - | - | - | - | - | | γ-Decalactone gamma-Decalactone Decan-
4-olide 2(3H)-Furanone, 5-hexyldihydro-
FURANONE, 5-HEXYLDIHYDRO-, 2(3H)-
gamma Decalactone gamma-Hexyl-gamma-
butyrolactone | 706-14-9 | - | - | - | - | - | Table 3 continued | | | | Health as | sessment | Permitted use in Australia | | |--|---------------|--------------------|---|--|----------------------------|----------| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | 8-Undecalactone delta-Undecalactone 6-hexyltetrahydro-2H-pyran-2-one 5-HYDROXYUNDECANOIC ACID LACTONE 2H-Pyran-2-one, 6-hexyltetrahydro- HEXYLTETRAHYDRO-2H-PYRAN-2-ONE, 6- 5-Hydroxyundecanoic acid | 710-04-3 | - | - | Suspected skin sensitiser | - | - | | 1-Propanol n -propanol propan-1-ol
n-Propyl alcohol Propyl alcohol Propanol
propan-1-ol n-propanol PROPANOL,
n- Ethyl carbinol | 71-23-8 | - | - | May cause drowsiness
or dizziness Causes serious
eye damage Repeated exposure
may cause skin dryness
and cracking | - | - | | butan-1-ol n-butanol n-butyl alcohol 1-Butanol Butyl alcohol Butan-1-ol Butanol butan-1-ol n-butanol BUTANOL, n- Butyl alcohol (8CA) 1-Hydroxybutane n-Propyl carbinol | 71-36-3 | - | - | Nervous Suspected Reprotoxic Harmful if swallowed May cause respiratory irritation Causes skin irritation Causes serious eye damage May cause drowsiness or dizziness Acute toxicity Acute toxicity (oral) | - | - | Table 3 continued | | | | Health as | sessment | Permitted use in Australia | |
--|----------------|--------------------------|---|---|----------------------------|--| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | 1-pentanol Amyl alcohol Pentan-1-ol PENTANOL, 1- 1-Pentanol (9CA) n-Pentanol Pentyl alcohol | 71-41-0 | - | - | Suspected Sensitiser Harmful if inhaled May cause respiratory irritation Causes skin irritation Acute toxicity | - | Permitted for use only in combination with other permitted ingredients as a flavour or a fragrance. If used in a flavour the total flavour concentration in a medicine must be no more than 5%. If used in a fragrance the total fragrance concentration in a medicine must be no more 1%. | | benzene benzene (R1) Annulene
Coal naphtha Carbon oil Cyclohexatriene
BENZEN Benzol Phenyl hydride | 71-43-2 | Yes
(may be
fatal) | - | Immune Carcinogenic May cause genetic defects Causes damage to organs through prolonged or repeated exposure May be fatal if swallowed Causes serious eye irritation Causes skin irritation Mutagenic Aspiration toxicity | - | - | | 1,3-Dioxolane, 2-butyl-4-methyl-
2-butyl-4-methyl-1,3-dioxolane | 74094-
60-3 | - | - | Suspected mutagen | - | - | Table 3 continued | | | | Health as | sessment | Permitted use in Australia | | |---|---------------|--------------------|---|---|------------------------------------|----------| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | aluminium powder (pyrophoric) aluminium powder (stabilised) Aluminium Aluminium metal ALUMINUM Aluminium, alkyls (NOC) Aluminium, pyro powders Aluminium, soluble salts Aluminium & compounds Aluminum powder Aluminum (metal) Elemental aluminum | 7429-90-5 | - | - | Neuro | May be used
as food
additive | - | | Iron IRON POWDER IRON, ELEMENTAL
JERN Rauta | 7439-89-6 | - | - | - | - | - | | Lanthanum LANTHANUM | 7439-91-0 | - | - | - | - | - | | Lead lead powder Lead and its compounds Lead, inorganic dusts & fumes Lead and compounds (inorganic) Lead (metallic) Lead metal | 7439-92-1 | | - | Carcinogenic Mutagenic Toxic for reproduction Suspected of causing genetic defects May cause damage to organs through prolonged or repeated exposure May damage the unborn child Suspected of damaging fertility Lactation | - | | | magnesium powder (pyrophoric)
Magnesium MAGNESIUM POWDER | 7439-95-4 | - | - | - | - | - | Table 3 continued | | | | Health as | sessment | Permitted use in Australia | | |---|---------------|---|---|---|----------------------------|----------| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | Manganese Magnesium
Manganese tetroxide MANGAN Mangaani
Manganese, fume, dust & compounds
Manganese Sucrate Colloidal manganese | 7439-96-5 | Yes (damage to organs through prolonged or repeated exposure) | - | Neuro Nervous Causes damage to organs through prolonged or repeated exposure if swallowed or inhaled | - | - | | mercury mercury (R1) Mercury & mercury compounds including methyl mercury Mercury, elemental vapour Mercury, elemental MERCURY metallic KVIKS KVIKKS Alkyl mercury compounds Cresol mercury naphthenate Colloidal mercury Metallic mercury Mercuric oxide Phenyl mercuric acetate Phenyl mercuric benzoate Phenyl mercuric borate Thimerosal Mercury and inorganic mercury compounds | 7439-97-6 | Yes (fatal) | - | Nervous Neuro Carcinogenic Mutagenic Toxic for reproduction May damage fertility May damage the unborn child Causes damage to organs through prolonged or repeated exposure Acute toxicity | - | | | Molybdenum Molybdenum & molybdenum compounds Molybdenum, insoluble compounds Molybdenum, soluble compounds MOLYBDEN Molybdeeni | 7439-98-7 | - | - | Renal Urinary | - | - | Table 3 continued | | | | Health as | sessment | Pern | nitted use in Australia | |---|---------------|---|---|---|--------------------------------------|-------------------------| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | nickel nickel powder Nickel, soluble compounds Nickel, metal NIKKEL Nickel, metal and insoluble compounds Elemental nickel Nickel catalyst Nickel, metallic | 7440-
02-0 | Yes (damage to organs through prolonged or repeated exposure) | | Skin sensitiser Respiratory Carcinogenic Suspected of causing cancer May cause an allergic skin reaction Suspected of causing cancer Causes damage to organs through prolonged or repeated exposure May cause an allergic skin reaction | | - | | potassium KALIUM | 7440-09-7 | - | - | Causes severe skin
burns and eye damage Skin corrosion | May be used
as a food
additive | - | | Rubidium | 7440-17-7 | - | - | - | - | - | | Silicon Silicon (powder, amorphous) Ammonium hexafluorosilicate Silicon (a) Quartz SILICIUM Pii, sis SILISIUM Elemental silicon | 7440-21-3 | - | - | - | - | - | | Silver COLLOIDAL SILVER Silver, metal
Hopea Silver and its salts (metal, soluble
compounds) Silver (1+) Silver cation
Silver Ion Silver, ionic Silver monocation
Argentum Shell Silver Silber | 7440-22-4 | - | - | Dermal | May be used
as a food
additive | - | | sodium NATRIUM | 7440-23-5 | - | - | Causes severe skin
burns and eye damage Skin corrosion | May be used
as a food
additive | - | Table 3 continued | | | | Health as | sessment | Per | mitted use in Australia | |---|---------------|--------------------|---|---|-----------|--| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | Strontium Strontium and its salts, other than nitrite | 7440-24-6 | - | - | Musculoskeletal | - | - | | Tin Tin, metal Tin, oxide & inorganic
compounds, except SnH4 Tina TINN
Metallic tin Tin flake Tin metal Tin powder | 7440-31-5 | - | - | - | - | - | | Titanium Titanium (powder) TITAN Titaani
TITANIUM (TI) | 7440-32-6 | - | - | - | - | - | | Tungsten Tungsten, insoluble compounds
Tungsten, soluble compounds WOLFRAM
Tungsten metal | 7440-33-7 | - | - | - | - | - | | Antimony Antimony & Antimony compounds
ANTIMON Antimoni Antimony metal
Antimony powder Stibium | 7440-36-0 | - | - | RespiratoryMetabolicHematologicHepatic | - | - | | Arsenic Arsenic and its compounds including arsenic trioxide (1327-53-3) & dimethyl arsenic acid (75-60-5) Arsenic, Inorganic Arsenic, elemental ARSEN Arsenic metal: Arsenia | 7440-38-2 | Yes | - | Gastrointestinal Dermal Cardiovascular Carcinogenic Toxic if swallowed May cause cancer Suspected of causing genetic defects May cause damage to organs through prolonged or repeated exposure Acute toxicity (oral, inhalation) Suspected
mutagen | - | Only for use as an active homoeopathic ingredient. The concentration of arsenic in the medicine must be no more than 0.001%. | | Barium Barium and Compounds | 7440-39-3 | - | - | • Renal • Urinary | - | - | Table 3 continued | | | | Health assessment | | | mitted use in Australia | |---|---------------|--------------------|---|--|-----------|-------------------------| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | Boron Boron and Compounds BOR | 7440-42-8 | - | - | DevelopmentalRespiratory | - | - | | cadmium (non-pyrophoric) cadmium (pyrophoric) Cadmium Cadmium & cadmium compounds KADMIUM Cadmium metal: Cadmium | 7440-43-9 | Yes (fatal) | | Musculoskeletal Renal Carcinogenic Urinary Respiratory May cause cancer Suspected of causing genetic defects Suspected of damaging fertility Suspected of damaging the unborn child Causes damage to organs through prolonged or repeated exposure Mutagenic Acute Toxicity (inhalation) Acute toxicity Reproductive | | | | Chromium and its salts Zinc chromates including zinc potassium chromate chromic acid Chromium (metal) CHROM Kromi KROM Chrome Chromium, metallic | 7440-47-3 | - | - | - | - | - | Table 3 continued | | | | Health as | sessment | Per | mitted use in Australia | |--|---------------|--------------------|---|---|-----------|-------------------------| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | cobalt cobalt & cobalt compounds Cobalt, metal dust & fume Cobalt, elemental KOBOLT Cobalt metal with tungsten carbide Cobalt metal without tungsten carbide | 7440-
48-4 | Yes (fatal) | Yes | Possibly carcinogenic Hematological Respiratory Developmental Harmful if swallowed May cause cancer by inhalation May cause respiratory irritation May cause damage to organs through prolonged or repeated exposure if inhaled May damage fertility May cause allergy or asthma symptoms or breathing difficulties if inhaled May cause an allergic skin reaction Skin sensitisation | - | - | | Copper Copper flakes (coated with aliphatic acid) Copper (metallic) COPPER COMPOUNDS KOBBER Kupari KOPPER Copper (fume, dusts and mists) Bronze Powder Cathode copper Copper powder Copper precipitates Copper slag-airborne Copper slag-milled Copper element | 7440-50-8 | - | - | Gastrointestinal | - | - | | Germanium | 7440-56-4 | - | - | - | - | - | Table 3 continued | | | | Health as | sessment | Permitted use in Australia | | |---|----------------|--------------------|---|---|--------------------------------------|----------| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | uranium Uranium (natural), soluble &
insoluble compounds RADIOISOTOPES
URAN Uraani Uranium (metal) | 7440-61-1 | Yes (fatal) | - | Developmental Respiratory Renal Fatal if swallowed May cause damage to organs through prolonged or repeated exposure Acute toxicity | - | - | | Vanadium | 7440-62-2 | - | - | Respiratory Hematological | - | - | | Zinc Zinc powder, pyrophoric
Zinc and Compounds Zinc dust Zinc metal | 7440-
66-6 | - | - | Hematologic Immune | - | - | | zirconium powder (pyrophoric)
zirconium powder (nonpyrophoric)
Zirconium Zirconium compounds
ZIRKONIUM | 7440-67-7 | - | - | - | - | - | | calcium Calcium carbonate KALSIUM | 7440-70-2 | - | - | - | May be used
as a food
additive | - | | Indium Indium & compounds Indiumi
Indium metal | 7440-74-6 | - | - | - | - | - | | Ethyl a-methylbutyrate Ethyl 2-methylbutyrate Ethyl ester 2-methylbutanoic acid Butanoic acid, 2-methyl-, ethyl ester ETYL 2-METYLBUTYRAT | 7452-79-1 | - | - | - | - | - | | Nonylcyclopropane | 74663-
85-7 | - | - | Suspected skin sensitiser | - | - | Table 3 continued | Chemical name(s) | | Health assessment | | | Permitted use in Australia | | |--|---------------|--------------------|---|---|----------------------------|--| | | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | Butyl butyryllactate
BUTYL BUTYROLACTATE
Butyl O-butyryllactate Butanoic acid,
2-butoxy-1-methyl-2-oxoethyl ester | 7492-70-8 | - | - | Suspected skin sensitiser | - | - | | Acetonitrile cyanomethane CYANIDES ACETONITRIL acetonitrile cyanomethane Ethyl nitrile Methyl cyanide | 75-05-8 | Yes | - | Harmful if swallowed Harmful in contact with skin Causes serious eye damage Eye irritation Acute toxicity (Oral, inhalation and dermal) | - | - | | Acetaldehyde ACETALDEHYD
acetaldehyde ethanal Acetic aldehyde
Ethanal Ethyl aldehyde | 75-07-0 | - | - | Nervous Respiratory Possibly carcinogenic Harmful if swallowed Suspected of causing genetic defects Causes serious eye irritation May cause respiratory irritation | - | Permitted for use only in combination with other permitted ingredients as a flavour or a fragrance. If used in a flavour the total flavour concentration in a medicine must be no more than 5%. If used in a fragrance the total fragrance concentration in a medicine must be no more 1%. | Table 3 continued | Chemical name(s) | | Health assessment | | | Permitted use in Australia | | |---|---------------|--------------------|---|---|----------------------------|----------| | | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | Dichloromethane methylene chloride Methane, dichloro- Methylene dichloride METHYLENE CHLORIDE Methylene chloride DICHLORMETHAN dichloromethane methylene chloride DIKLORMETAN Methane, dichloro- Aerothene MM Methylene dichloride Dichloromethane | 75-09-2 | - | - | Suspected of causing cancer Suspected mutagen Suspected reprotoxic LD endocrine disruptor Suspected sensitiser Neuro Hepatic May cause drowziness or dizziness Causes serious eye irritation Causes skin irritation | | - | | Oxirane, methyl- propylene oxide 1,2-epoxypropane methyloxirane propylene oxide (R1) Propylene oxide (1,2-Epoxypropane) Oxirane, 2-methyl- 1,2-epoxypropane PROPYLENOXID propylene oxide 1,2-epoxypropane methyloxirane PROPYLENOKSYD, 1,2- 1,2-Epoxy propane Methyl ethylene oxide Propene oxide 1,2-Propylene oxide Methyloxirane monomer | 75-56-9 | Yes | - | Respiratory Possibly carcinogenic Harmful if swallowed Harmful in contact with skin May cause genetic defects May cause respiratory irritation Causes severe burns and eye damage Acute toxicity (inhalation, dermal and oral) Eye irritation | - | - | | Tributyl aconitate Tributyl prop-1-ene-1,2,3-
tricarboxylate | 7568-58-3 | - | - | Suspected mutagen Suspected skin sensitiser | - | - | Table 3 continued | | | | Health as | sessment | Permitted use in Australia | |
---|---------------|--------------------|---|--|----------------------------|-----------| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | Camphor bornan-2-one 1,7,7-Trimethylbicyclo[2.2.1]heptan-2-one Camphor, synthetic Bicyclo[2.2.1]heptan-2-one, 1,7,7-trimethyl- BICYCLO(2.2.1)HEPTAN-2-ONE, 1,7,7-TRIMETHYL- Bornan-2-oni 1,7,7-Trimethylbicyclo(2.2.1) heptan-2-one Camphor fractions (1S)-Camphor (-)-Alcanfor Bicyclo[2.2.1] heptan-2-one, 1,7,7-trimethyl-, (1S)- Bicyclo[2.2.1]heptan-2-one, 1,7,7-trimethyl-, (1S,4S)- Camphor, (1S,4S)-(-)- I-Camphor S-Camphor (+)-2-Bornanone Bicyclo[2.2.1] heptan-2-one, 1,7,7-trimethyl-, (1R)- Bicyclo[2.2.1]heptan-2-one, 1,7,7-trimethyl-, (1R,4R)- Camphor, (1R,4R)-(+)- (R)-Camphor 2-Camphonone Gum camphor Laurel camphor | 76-22-2 | - | - | Irritation | - | | | 3-Methyl-1,2-cyclopentanedione 3-Methylcyclopentane-1,2-dione 1,2-Cyclopentanedione, 3-methyl- 2-Cyclopenten-1-one, 2-hydroxy-3-methyl- 2-Hydroxy-3-methyl-cyclo-pent-2-en-1-one Maple lactone | 765-70-8 | - | - | Suspected mutagen Suspected skin
sensitiser Suspected toxic
for reproduction | - | - | | Water AQUA VAND Vesi, tislattu tai s
VANN Moisture | 7732-18-5 | - | - | - | Permitted | Permitted | | Ethyl mandelate | 774-40-3 | - | - | - | - | - | Table 3 continued | | | | Health as | sessment | Per | mitted use in Australia | |--|---------------|--------------------|---|--|-----------|-------------------------| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | selenium Selenium and its compounds
excluding hydrogen selenide, selenium sulfide
and selenium disulphide SELEN Elemental
selenium Selenium alloy | 7782-49-2 | Yes | - | Toxic if swallowed May cause damage
to organs through
prolonged or
repeated exposure Acute toxicity
(inhalation, oral) | - | - | | chlorine Active chlorine generated from chloride of ambient water by electrolysis Active chlorine generated from hydrochloric acid by electrolysis active chlorine generated from magnesium chloride hexahydrate and potassium chloride by electrolysis active chlorine generated from magnesium chloride hexahydrate by electrolysis Active chlorine generated from potassium chloride hexahydrate by electrolysis Active chlorine generated from potassium chloride by electrolysis active chlorine generated from sodium chloride and pentapotassium bis(peroxymonosulphate) bis(sulphate) and sulphamic acid Active chlorine generated from sodium chloride by electrolysis Active chlorine generated from sodium dichloroisocyanurate dihydrate and pentapotassium bis(peroxymonosulphate) bis(sulphate) active chlorine generated from sodium N-chlorosulfamate Active chlorine released from chlorine Active chlorine released from hypochlorous acid Active chlorine generated from seawater (sodium chloride) by electrolysis | 7782-50-5 | Yes | - | Causes serious eye irritation May cause respiratory irritation Causes skin irritation Acute toxicity (inhalation) | - | | Table 3 continued | | | | Health as | sessment | Permitted use in Australia | | |--|---------------|--------------------|---|------------------------|--|----------| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | Ethyl 3-methyl-3-phenylglycidate Ethyl methylphenylglycidate Ethyl 2,3-epoxy- 3-phenylbutyrate 2-Oxiranecarboxylic acid, 3-methyl-3-phenyl-, ethyl ester 2-Oxiranecarboxylic acid, 3-methyl-3-phenyl-, ethyl ester 3-methyl-3-phenyl-, ethyl ester 3-METHYL-3-PHENYL GLYCIDIC ACID ETHYL ESTER OXIRANECARBOXYLIC ACID, 3-METHYL-3-PHENYL-, ETHYL ESTER OKSIRANKARBOKSYLSYRE, 3-METYL- 3-FENYL-, ETYL ESTER Aldehyde C16 Hexadecanal Palmitaldehyde 2,3-Epoxy-3-phenylbutyric acid, ethyl ester of (as impurity only) alpha- beta-Epoxy-beta-methylhydrocinnamic acid, ethyl ester of (as impurity only)) Ethyl methylphenylglycidate (as impurity or fragrance use only)) | 77-83-8 | - | | | | | | Tributyl acetylcitrate 1,2,3-Propanetricarboxylic acid, 2-(acetyloxy)-, tributyl ester ACETYL TRIBUTYL CITRATE Tributyl O-acetylcitrate 1,2,3-Propanetricarboxylic acid, 2-(acetyloxy)-, 1,2,3-tributyl ester Tributyl-O-Acetyl citrate PROPANETRICARBOXYLIC ACID,2-(ACETYL-OXY)-TRIBUTYLESTER, 1,2,3- Citric acid, tributyl ester, acetate Citroflex A-4 Uniplex 84 | 77-90-7 | - | - | Endocrine disruption | - | - | | Triethyl citrate 1,2,3-Propanetricarboxylic acid, 2-hydroxy-, triethyl ester 1,2,3-Propanetricarboxylic acid, 2-hydroxy-, 1,2,3-triethyl ester PROPANTRIKARBOKSYLSYRE,2-HYDROKSY-, TRIETYLESTER, 1,2,3- Citroflex 2 | 77-93-0 | - | - | - | May be used
as a food
additive
(flavouring) | - | Table 3 continued | | | | Health as | sessment | Permitted use in Australia | | |---|---------------|--------------------|---|--|----------------------------|----------| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | Tetrahydrolinalool 3,7-dimethyloctan-3-ol
3-Octanol, 3,7-dimethyl- 3,7-DIMETHYL-3-
OCTANOL OKTANOL,3,7-DIMETYL, 3- | 78-69-3 | - | - | - | - | - | | 1,6-Octadien-3-ol, 3,7-dimethyl- Linalol Linalool 3,7-dimethyl-1,6-octadien-3-ol dl-linalool linalool 3,7-dimethyl-1,6-octadien-3-ol OKTADIEN-3-OL,3,7-DIMETYL, 1,6- Linalool FCC synthetic Linalyl alcohol 1,6-Octadien-3-ol, 3,7-dimethyl-, (S)- 1,6-Octadien-3-ol, 3,7-dimethyl-, (S)-(+)- | 78-70-6 | - | - | Causes skin irritation May cause an allergic
skin reaction Skin sensitiser | - | - | | Isobutyraldehyde 2-METHYLPROPANAL
Propanal, 2-methyl- ISOBUTYRALDEHYD
METYLPROPANAL, 2- Butaldehyde
Butanal Butyraldehyde n-Butyl aldehyde
Isobutyraldehyde | 78-84-2 | - | - | - | - | - | | Methacrolein 2-Methyl-2-propenal
Methacrylaldehyde 2-Propenal, 2-methyl-
ACROLEIN | 78-85-3 | - | - | Suspected acutely toxic via the oral route Suspected carcinogen Suspected mutagen Suspected skin irraitant Suspected skin sensitiser Suspected toxic for reproduction | - | - | Table 3 continued | | | | Health as | sessment | Permitted use in Australia | |
--|---------------|--------------------|---|--|----------------------------|----------| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | Butanone ethyl methyl ketone methyl ethyl ketone (MEK) 2-Butanone METHYLATED SPIRIT(S) BUTANON butanone ethyl methyl ketone BUTANON, 2- 2-Oxobutane Acetone, methyl- Butan-2-one Ketone, ethyl methyl Methyl acetone | 78-93-3 | - | - | Nero Suspected reprotoxic LD Endocrine disruption Critical effects developmental, musculoskeletal Causes serious eye irritation May cause respiratory irritation May cause drowsiness or dizziness Repeated exposure may cause skin dryness and cracking | - | | | Methylglyoxal Pyruvaldehyde Propanal,
2-oxo- | 78-98-8 | - | - | - | - | - | | methyl acetate Acetic acid, methyl ester
METHYLACETAT METYLACETAT
Methyl ethanoate Methyl ester of acetic acid | 79-20-9 | - | - | Causes serious
eye irritationMay cause drowsiness
or dizziness | - | - | | 3-Buten-2-one, 4-(2,5,6,6-tetramethyl-2-cyclohexen-1-yl)- α-Irone alpha-Irone 5-METHYL-ALPHA-IONONE 4-(2,5,6,6-tetramethylcyclohex-2-enyl)but-3-en-2-one BUTEN-2-ONE, 4-(2,5,6,6-TETRAMEHTYL-2-CYCLOHEXEN-1-YL)-, CIS-, 3- alpha-Irone | 79-69-6 | - | - | Causes skin irritation May cause an allergic
skin reaction Suspected carcinogen Suspected skin
sensitiser Suspected mutagen | - | - | Table 3 continued | | | | Health as | sessment | Permitted use in Australia | | |---|---------------|--------------------|---|---|----------------------------|----------| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | 3-Buten-2-one, 4-(2,5,6,6-tetramethyl-
1-cyclohexen-1-yl)- β-Irone 6-Methyl
betaionone 5-METHYL-BETA-IONONE
4-(2,5,6,6-tetramethyl-1-cyclohexen-1-yl)-3-
buten-2-one BETA-IRONE | 79-70-9 | - | - | Causes skin irritation May cause an allergic
skin reaction Suspected carcinogen Suspected mutagen Suspected skin
sensitiser | - | - | | lonone Ionone (mixed isomers)
MIXED IONONES | 8013-90-9 | - | - | Causes skin irritation May cause an allergic
skin reaction Suspected carcinogen Suspected mutagen Suspected skin
sensitiser | - | - | | a-Terpineol acetate alpha-Terpineol acetate A-TERPINYL ACETATE p-menth-1-en-8-yl acetate Terpinyl acetate 3-Cyclohexene- 1-methanol, .alpha.,.alpha.,4-trimethyl-, 1-acetate 3-CYCLOHEXENE-1-METHANOL, .ALPHA.,.ALPHA.,4-TRIMETHYL-, ACETATE 3-Cyclohexene-1-methanol, CYCLOHEXENE- 1-METHANOL,A,A,4-TRIMETHYL-,ACETAT, 3- .alphaTerpineol acetate .alphaTerpinyl acetate Terpineol acetate | 80-26-2 | - | - | - | - | - | Table 3 continued | | | Health assessment | | | Per | mitted use in Australia | |---|---------------|--------------------------|---|---|-----------|--| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | Bicyclo[3.1.1]hept-2-ene, 2,6,6-trimethyl- a-Pinene 2,6,6-Trimethylbicyclo[3.1.1] hept-2-ene (alpha-Pinene) alpha-Pinene PINENE Pin-2(3)-ene Alpha-Pinenes 2-PINEN Pin-2(3)-eeni PINEN, 2- 2,2,6-Trimethylbicyclo(3.1.1)hept-2-ene 2,6,6-Trimethylbicyclo(3.1.1)heptane, didehydro deriv. 2,6,6-Trimethylbicyclo(3.1.1)hept-2-ene 2-Pinene alpha-(+)-Pinene Cyclic Dexadiene Biclo{3.1.1}hept-2-ene, 2,6,6-trimethyl- (15,2S)-(-)-alpha-Pinene 2-Pinene, (15,5S)-(-)- Bicyclo[3.1.1]hept-2-ene,2,6,6-trimethyl-, (15,5S)- (S)-(-)-alpha-Pinene (+)-Pin-2(3)-ene | 80-56-8 | Yes
(may be
fatal) | - | Harmful if swallowed May be fatal if swallowed Causes skin irritation May cause damage to organs through prolonged or repeated exposure May cause an allergic skin reaction | - | Permitted for use only in combination with other permitted ingredients as a flavour or a fragrance. If used in a flavour the total flavour concentration in a medicine must be no more than 5%. If used in a fragrance the total fragrance concentration in a medicine must be no more 1%. | | methyl methacrylate methyl 2-methylprop- 2-enoate methyl 2-methylpropenoate 2-Propenoic acid, 2-methyl-, methyl ester Methacrylate, methyl- Methacrylic acid, methyl ester Methyl methacrylate monomer (MMA) methylmethacrylat methyl methacrylate methyl 2-methylprop- 2-enoate methyl 2-methylpropenoate METYL-2-METYLPROPENOAT Methyl ester of methacrylic acid Methyl-2-methyl-2- propenoate | 80-62-6 | - | - | Nervous Respiratory Causes skin irritation Skin sensitisation May cause respiratory irritation May cause an allergic skin reaction | - | - | | Methyl cyclopentenolone Methylcyclopentenolone 2-hydroxy-3- methylcyclopent-2-enone 2-Cyclopenten- 1-one, 2-hydroxy-3-methyl- 3-METHYL- 2-CYCLOPENTEN-2-OL-1-ONE CYCLOPENTEN-1-ONE, 2-, 2-HYDROXY-3- METHYL- | 80-71-7 | - | - | Suspected carcinogen Suspected toxic for reproduction | - | - | ## Table 3 continued | | | | Health assessment | | | Permitted use in Australia | | |--|---------------|--------------------|---|---|-----------|----------------------------|--| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | | Tetracosyl acetate | 822-29-7 | - | - | - | - | - | | | diethyl phthalate (DEP) Diethylphthalate 1,2-Benzenedicarboxylic acid, diethyl ester Ethyl phthalate Neantine o-Benzenedicarboxylic acid diethyl ester o-Bis(ethoxycarbonyl)benzene Phthalate, diethyl Phthalic acid, diethyl ester 1,2-Benzenedicarboxylic acid, 1,2-diethyl ester DIETHYLPHTHALAT Dietyyliftalaatti DIETYL-1,2-BENZENDIKARBOKSYLAT Diethyl ester of phthalic acid | 84-66-2 | - | - | ReproductiveHepaticLD Endocrine disruption | - | - | | | diisobutyl phthalate (DIBP) 1,2-Benzenedicarboxylic acid, bis(2-methylpropyl) ester diisobutyl phthalate 1,2-Benzenedicarboxylic acid, bis(2-methylpropyl) ester 1,2-Benzenedicarboxylic acid, 1,2-Benzenedicarboxylic acid, 1,2-bis(2-methylpropyl) ester Di-isobutyl phthalate - (1,2-Benzene- dicarboxylic acid, 1,2- bis-(2methylpropyl) ester) Diisobutylphthatlate (1,2-Benzenedicarboxylic acid, 1,2-bis(2-methylpropyl) ester) DIISOBUTYLPHTHALAT DIISOBUTYLFTALAT | 84-69-5 | - | - | May damage
the unborn child Suspected of
damaging fertility LD Endocrine disruption Toxic for reproduction | - | - | | Table 3 continued | Chemical name(s) | | Health assessment | | | Permitted use in Australia | |
--|---------------|--------------------|---|--|----------------------------|----------| | | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | dibutyl phthalate (DBP) 1,2-Benzenedicarboxylic acid, dibutyl ester Dibutyl phthalate 1,2-Benzenedicarboxylic acid, dibutyl ester Di-n-butyl phthalate Phthalic acid, dibutyl ester Bis-n-butyl phthalate Butyl phthalate Dibutyl o-phthalate Di(n-butyl) 1,2-benzenedicarboxylate n-Butyl phthalate Phthalic acid di-n-butyl Di-n-butyl phthalate Phthalic acid di-n-butyl Di-n-butyl phthalate 1,2-Benzenedicarboxylic acid, 1,2-dibutyl ester Dibutyl phthalate (1,2-Benzene- dicarboxylic acid, 1,2- dibutyl ester) Dibutylphthalate (1,2-Benzenedicarboxylic acid, 1,2-dibutyl ester) DIBUTYLPHTHALATE Dibutyl benzene-1,2-dicarboxylate DIBUTYLPHTHALAT DIBUTYLFTALAT Dibutyl-1,2-benzene-dicarboxylate | 84-74-2 | | - | May damage the unborn child Suspected of damaging fertility LD Endocrine disruption Toxic for reproduction | | | | Methyl 2-methylbutyrate
METHYL METHYLBUTYRATE
Butanoic acid, 2-methyl-, methyl ester | 868-57-5 | - | - | Suspected carcinogenSuspected skin
sensitiser | - | - | | 2-Hydroxyethyl salicylate Monoglycol
salicylate GLYCOL SALICYLATE ETHYLENE
GLYCOL MONOSALICYLATE Benzoic acid,
2-hydroxy-, 2-hydroxyethyl ester | 87-28-5 | - | - | Suspected acutely toxic via the oral route Suspected skin irritant | - | - | | Caryophyllene beta-Caryophyllene
Bicyclo[7.2.0]undec-4-ene, 4,11,11-trimethyl-8-
methylene-, [1R-(1R,4E,9S)]- | 87-44-5 | - | - | Suspected bioaccumulative Suspected skin sensitiser Suspected toxic for reproduction | - | - | | Acetovanillin 4-formyl-2-methoxyphenyl acetate Benzaldehyde, 4-(acetyloxy)-3-methoxy- | 881-68-5 | - | Suspected | Suspected carcinogen | - | - | Table 3 continued | Chemical name(s) | | | Health as | sessment | Per | mitted use in Australia | |--|---------------|--------------------|---|---|-----------|---| | | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | Menthyl acetate Cyclohexanol, 5-methyl-
2-(1-methylethyl)-, 1-acetate, (1R,2S,5R)-
rel- Menthyl acetate (1alpha,2beta,5alpha)
 CYCLOHEXANOL, 5-METHYL-2-(1-
METHYLETHYL)-, ACETATE, (1.ALPHA.,2.
BETA.,5.ALPHA.)- | 89-48-5 | - | - | - | - | - | | Cyclohexanol, 5-methyl-2-(1-methylethenyl)-, [1R-(1.alpha.,2.beta.,5.alpha.)]- (-)-Isopulegol Isopulegol Cyclohexanol, 5-methyl-2-(1-methylethenyl)-, (1R,2S,5R)- SYKLOHEKSANOL, 5-METYL-2-(1-METYL-ETENYL)-, (1R-(alfa,2beta,5alfa))- Isopulegol | 89-79-2 | - | - | Suspected of causing cancer Causes damage to organs through prolonged or repeated exposure | - | - | | Cyclohexanone, 5-methyl-2-(1-methylethyl)-, (2R,5S)-rel- Menthone trans-p-Menthan-3-one trans-menthone CYCLOHEXANONE, 5-METHYL-2-(1-METHYLETHYL)-, TRANS- SYKLOHEKSANON, 5-METYL-2-(1-METYL-ETENYL)-, trans- dl-Menthone p-Menthan-3-one (trans) | 89-80-5 | - | - | Causes skin irritation Suspected mutagen Suspected skin sensitiser Suspected toxic for reproduction | - | - | | Piperitone 6-isopropyl-3-methylcyclohex-2-
enone 2-Cyclohexen-1-one,
3-methyl-6-(1-methylethyl)- | 89-81-6 | - | - | - | - | - | | Cyclohexanone, 5-methyl-2-(1-methylethylidene)-, (R)- Pulegone d-Pulegone p-menth-4(8)-en-3-one Cyclohexanone, 5-methyl-2-(1-methylethylidene)-, (5R)- | 89-82-7 | - | - | Toxic if swallowed Suspected carcinogen Causes damage to organs through prolonged or repeated exposure Suspected skin sensitiser Suspected toxic for reproduction | - | Mandatory component of agathosma betulina | Table 3 continued | | | | Health as | sessment | Permitted use in Australia | | |--|---------------|--------------------|---|---|----------------------------|---| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | 1-naphtol 1-Naphthalenol 1-naphthol 1 -Naphthol and its salts PHENOLS Naphthalen-1-ol NAFTOL, 1- 1-Hydroxynaphthalene alpha-Hydroxynaphthalene Basf Ursol ERN C.I. 76605 C.I. Oxidation Base 33 Durafur Developer D Fouramine ERN Fourrine 99 Fourrine ERN Furro ER Nako TRB Naphthalene, 1-hydroxy- | 90-15-3 | - | | Harmful if swallowed Harmful in contact with skin Causes serious eye damage Causes skin irritation May cause respiratory irritation May cause an allergic skin reaction Suspected mutagen Suspected skin sensitiser Harmonised classification for specific target organ toxicity Suspected toxic for reproduction Acute Toxicity Suspected acutely toxic via the oral route | - | | | Syringol 2,6-Dimethoxyphenol PHENOLS Phenol, 2,6-dimethoxy- | 91-10-1 | - | - | Suspected carcinogen Suspected skin irritant Suspected skin sensitiser | - | Permitted for use only in combination with other permitted ingredients as a fragrance. If used in a fragrance the total fragrance concentration in a medicine must be no more than 1%. | Table 3 continued | | | | Health as | sessment | Perr | nitted use in Australia | |---|---------------|--------------------|-----------|--|-----------|---| | Chemical name(s) | CAS
number | Harmful if inhaled | | | FSANZ [9] | TGA [10] | | 2H-1-Benzopyran-2-one BENZOPYRAN-2-ON,
2H-1- 1,2-Benzopyrone 2-Propenoic acid,
3-(2-hydroxyphenyl)-, .deltalactone
5,6-Benzo-2-pyrone Benzo-alpha-pyrone
Cinnamic acid, o-hydroxy-, delta-lactone
cis-o-Coumarinic acid lactone
Coumarinic anhydride Cumarin Rattex
Tonka bean camphor | 91-64-5 | - | - | Toxic if swallowed | - | Permitted for use only in combination with other permitted ingredients as a fragrance. If used in a fragrance the total fragrance concentration in a medicine must be no more than 1%. | | 2H-1-Benzopyran-2-one, 6-methyl-
6-Methylcoumarin 6-METHYL COUMARIN | 92-48-8 | - | - | Harmful if swallowed Suspected carcinogen Suspected mutagen Suspected toxic for reproduction | - | Permitted for use only in combination with other permitted ingredients as a fragrance. If used in a fragrance the total fragrance concentration in a medicine must be no more than 1%. | | trans-2-Hexenol trans-hex-2-en-1-ol
2-HEXEN-1-OL, TRANS- 2-Hexen-1-ol, (2E)-
trans-2-HEXEN-1-OL 2-Hexen-1-ol, (E)- | 928-95-0 | - | - | Suspected skin irritant | - | - | | Leaf alcohol cis-3-Hexenol 3-HEXENOL cis-hex-3-en-1-ol 3-Hexen-1-ol, (3Z)- CIS-3-HEXEN-1-OL 3-HEXEN-1-OL, (Z)- cis-3-Hexene-1-ol | 928-96-1 | - | - | - | - | - | | Creosol 2-Methoxy-4-methylphenol
2-METHOXY-P-CRESOL PHENOLS
Phenol, 2-methoxy-4-methyl-
2-Methoxy-4-methylphenol Cresylic acid
Tar acid oil | 93-51-6 | - | - | Suspected acutely toxic via the oral route Suspected carcinogen Suspected mutagen Suspected skin irraitant Suspected skin sensitisation Suspected toxic
for reproduction | - | - | Table 3 continued | | | | Health as | sessment | Pern | nitted use in Australia | |---|---------------|--------------------|---|---|--------------------------------------|-------------------------| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | Ethyl benzoate Benzoic acid, ethyl ester Salts of benzoic acid other than esters of benzoic acid AMMONIUM BENZOATE / BUTYL BENZOATE / CALCIUM BENZOATE / ETHYL BENZOATE / ISOBUTYL BENZOATE / ISOPROPYL BENZOATE / MAGNESIUM BENZOATE / MEA-BENZOATE / METHYL BENZOATE / PHENYL BENZOATE / POTASSIUM BENZOATE / PROPYL BENZOATE ETHYLBENZOAT BENZOSYRE, ETYLESTER | 93-89-0 | - | - | - | May be used
as a food
additive | - | | Styrallyl acetate alpha-Methylbenzyl acetate METHYLBENZYL ACETATE 1-phenylethyl acetate Benzenemethanol, .alphamethyl-, 1-acetate BENZENMETANOL,A-METYL-,ACETAT Benzenemethanol, alpha-methyl-, 1-acetate Benzenemethanol,.alphamethyl-,acetate Methylphenyl carbinyl acetate (.+)-Styrallyl acetate | 93-92-5 | - | - | - | - | - | | Propenylguaethol ETHOXY-PROPENYLPHENOL 2-ethoxy-5-prop-1-enylphenol PHENOLS Phenol, 2-ethoxy-5-(1-propen-1-yl)- Phenol, 2-ethoxy-5-(1-propenyl)- | 94-86-0 | - | - | Suspected acutely toxic via the oral route Suspected skin sensitisation | - | - | | o-cresol p-cresol mix-cresol
Phenol, 2-methyl- orthocresol
CRESOL, ORTHO- Methylphenol
CRESOLS PHENOLS KRESOL, o-
Cresol (all isomers) ortho-Cresol 2-Cresol
o-Cresylic acid 1-Hydroxy-2-methylbenzene
2-Hydroxytoluene 2-Methyl phenol | 95-48-7 | - | - | Nervous Toxic if swallowed Toxic in contact with skin Causes severe skin burns and eye damage Acute toxicity (oral, dermal) Skin corrosion | - | - | Table 3 continued | | | | Health as | sessment | Per | mitted use in Australia | |--|--|--------------------|---|---|-----------|-------------------------| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | 3,4-xylenol 3,4-Dimethylphenol
Phenol, 3,4-dimethyl- Dimethylphenol
PHENOLS 3,4-DIMETHYLPHENOL | 4-dimethyl- Dimethylphenol 3,4-DIMETHYLPHENOL • Hepatic • Immune • Toxic if swallowed • Toxic in contact with skin • Causes severe skin burns and eye dam • Urinary • Acute Toxicity • Skin Corrosion | | Hepatic Immune Toxic if swallowed Toxic in contact with skin Causes severe skin burns and eye damage Urinary Acute Toxicity | - | - | | | 2,3-Heptanedione Heptane-2,3-dione | 96-04-8 | - | - | Suspected mutagenSuspected skin sensitiser | - | - | | Dihydroxyacetone 1,3-dihydroxyacetone
DIHYDROXYACETONE (MONOMER)
2-Propanone, 1,3-dihydroxy- | 96-26-4 | - | - | - | - | - | | γ-Butyrolactone gamma-Butyrolactone 4-Hydroxybutanoic acid lactone BUTYROLACTONE 2(3H)-Furanone, dihydro- gamma-Hydroxybutyrolactone gamma butyrolactone 4-BUTYROLACTON Butyrolaktoni FURANONE,DIHYDRO,2(3H)- 4-Hydroxybutyric acid, gamma-lactone Butyrolactone, gamma- Dihydro-2(3H)- furanone | 96-48-0 | - | - | - | - | - | | Phenol, 2-methoxy-4-(2-propenyl)- Eugenol Phenol, 2-methoxy-4-(2-propen- 1-yl)- Fenoli, 2-metoksi-4-(2-propenyyli)- FENOL, 2-METOKSY-4-(2-PROPENYL)- 4-Allyl-2-methoxyphenol Phenol, 4-allyl-2-methoxy- | 97-53-0 | - | - | Causes serious eye irritation May cause an allergic skin reaction | - | - | | | | | Health as | sessment | Per | mitted use in Australia | |--|---|--------------------|---|--|-----------|-------------------------| | Chemical name(s) | CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | Ethyl 2-methylpropanoate Propanoic acid,
2-methyl-, ethyl ester Ethyl isobutyrate
2-METHYLPROPANSYREETHYLESTER | -, ethyl ester Ethyl isobutyrate | | Suspected skin sensitiser | - | - | | | ethyl lactate ethyl DL-lactate Propanoic acid,
2-hydroxy-, ethyl ester ETHYLLACTAT
ethyl lactate ethyl DL-lactate
ETYL-2-HYDROKSYPROPANOAT Lactic acid,
ethyl ester(S) lactic acid, ethyl ester
Propanoic acid, 2-hydroxy-, ethyl ester | oic acid, 97-64-3 May cause respiratory irritation Causes serious eye damage Specific organ toxicity | | - | - | | | | furfuryl alcohol 2-2-Furanmethanol furfuryl alcohol (R1) 2-Furanmethanol 2-FURYLMETHANOL FURANMETANOL, 2- 2-Furancarbinol 2-Hydroxymethylfuran | 98-00-0 | Yes | - | Harmful if swallowed Harmful in contact with skin Causes serious eye irritation May cause an allergic skin reaction Suspected carcinogenic May cause respiratory irritation May cause damage to organs through prolonged or repeated exposure Acute toxicity (inhalation, dermal and oral) | - | | Table 3 continued | | | | Health as | sessment | Per | mitted use in Australia | |---|---------------|--------------------------------------|-----------|--|-----------|--| | Chemical name(s) | CAS
number | Harmful if respiratory sensitisation | | Other reported hazards | FSANZ [9] | TGA [10] | | 2-Furancarboxaldehyde 2-furaldehyde
2-FURANCARBALDEHYD Fural
Furfuraldehyde | 98-01-1 | Yes | - | Hepatic Suspected carcinogenic Suspected mutagenic Toxic if contact with skin Causes serious eye irritation Toxic if swallowed May cause respiratory irritation Acute toxicity Skin irritation | - | - | | a-Terpineol alpha-Terpineol p-menth-1-en-8-ol 3-Syklohekseeni-1-metanoli MENTH-1-EN-8-OL , P- Terpineol 3-Cyclohexene-1-methanol,.alpha.,.alpha., 4-trimethyl- (-)alphaTerpineol (+-)-Alpha-Terpineol dlalphaTerpineol p-Menth-1-en-8-ol, (R)-(+)- (R)-(+) alphaTerpineol (s)-p-Menth-1-en-8-ol Terpineol 350 p-Menth-1-en-8-ol (S) | 98-55-5 | - | - | | | Permitted for use only in combination with other permitted ingredients as a flavour or a fragrance. If used in a flavour the total flavour concentration in a medicine must be no more than 5%. If used in a fragrance the total fragrance concentration in a medicine must be no more 1%. | Table 3 continued | | | | Health as | sessment | Per | mitted use in Australia | |---|---------------|--------------------------|---|--|-----------|--| | Chemical name(s) |
CAS
number | Harmful if inhaled | May cause
respiratory
sensitisation | Other reported hazards | FSANZ [9] | TGA [10] | | acetophenone Ethanone, 1-phenyl- PHENYL METHYL KETONE ACETOPHENON ACETOFENON Acetylbenzene Hypnone 1-Phenylethanone | 98-86-2 | - | - | Harmful if swallowed Causes serious eye irritation Acute toxicity | | Permitted for use only in combination with other permitted ingredients as a flavour or a fragrance. If used in a flavour the total flavour concentration in a medicine must be no more than 5%. If used in a fragrance the total fragrance concentration in a medicine must be no more 1%. | | carvone (ISO) 2-methyl-5-(prop-1-en-2-yl)cyclohex-2-en-1-one Carvone D-p-mentha-1(6),8-dien-2-one 2-Cyclohexen-1-one, 2-methyl-5-(1-methylethenyl)- Bedoukian L-Carvone L-Carvone 2-Cyclohexen-1-one,2-methyl-5-(1-methylethenyl)-,(5R)- (4R)-(-)-Carvone (-)-(5R)-Carvone p-Mentha-6,8-dien-2-one, (R)-(-)- (R)-(-)-Carvone (R)-Carvone d-Carvone | 99-49-0 | - | - | May cause alergic
skin reaction Skin sensitiser Suspected carcinogen | - | - | | 1,4-Cyclohexadiene, 1-methyl-4-(1-methylethyl)- y-Terpinen p-Mentha-1,4-diene GAMMA-TERPINENE CYCLOHEXADIEN,1-METYL-4-(1-METYLETYL)-, 1,4- 1-Methyl-4-isopropyl-1,4-cyclohexadiene gammaTerpinene | 99-85-4 | Yes
(may be
fatal) | - | Fatal if swallowed Suspected
bioaccumulative Suspected skin
sensitiser | - | - | # **Appendix D: Excluded studies from scoping review** Table 4: Excluded studies and exclusion reason | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |--|--|---|-------------------|--------|-------|-----------|------------------------|----------------------------------| | 253 Increasing Incidence and
Severity of Electronic Cigarette
Burns: Two Year Experience at
a Single Verified Burn Center | Komak, S. and Cross, J | Journal of Burn
Care & Research | 2019 | 40 | Supp1 | S105-S105 | Excluded | Study design | | 284 Resurgence of Electronic
Cigarette Explosions Despite
Regulation | Day, A., McLawhorn, M.M.,
Prindeze, N.J., Nosanov, L.B.,
Moffatt, L.T. and Shupp, J.W. | Journal of Burn
Care & Research | 2019 | 40 | Supp1 | S119-S120 | Excluded | Outcome
type; study
design | | Briefly Noted | - | Alcoholism & Drug
Abuse Weekly | 2019 | 31 | 4 | 8-8 | Excluded | Study design | | E-cigarettes: Hazardous or helpful?
Their efficacy as a tool for quitting
regular cigarettes and their
long-term safety remain concerning | - | Harvard Heart
Letter | 2019 | 29 | 12 | 5-5 | Excluded | Outcome
type | | Electronic cigarette among health science students in Saudi Arabia | - | Annals of
Thoracic Medicine | 2019 | 14 | 1 | 56-62 | Excluded | Outcome
type | | In Case You Haven't Heard | - | Alcoholism & Drug
Abuse Weekly | 2019 | 31 | 26 | 8-8 | Excluded | Study design | | Vaping + smoking = bad news | - | University
of California
at Berkeley
Wellness Letter | 2019 | - | - | 3-3 | Excluded | Study design | | Comparison of systemic exposure to toxic and/or carcinogenic volatile organic compounds (VOCs) during vaping, smoking, and abstention | Helen, G.S., Liakoni, E.,
Nardone, N., Addo, N.,
Jacob, P. and Benowitz, N.L. | Cancer Prevention
Research | 2019 | 13 | 2 | 153-162 | Excluded | Duplicate | Table 4 continued | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |--|--|--|-------------------|--------|-------|-----------|------------------------|---------------------| | E-cigarettes compared with nicotine replacement therapy within the UK Stop Smoking Services: the TEC RCT | Hajek, P., Phillips-Waller, A.,
Przulj, D., Pesola, F.,
Myers Smith, K., Bisal, N.,
Li, J., Parrott, S.J., Sasieni, P.,
Dawkins, L. and Ross, L. | Health Technology
Assessment | 2019 | - | - | 1-108 | Excluded | Outcome
type | | Moderating the Effects of Adverse
Childhood Experiences to Address
Inequities in Tobacco-Related
Risk Behaviors | Srivastav, A., Strompolis, M.,
Kipp, C., Richard, C.L. and
Thrasher, J.F. | Health Promotion
Practice | 2020 | 21 | Supp1 | 139S-147S | Excluded | Outcome
type | | Tobacco Advertisements:
What Messages Are They Sending
in African American Communities? | Rosario, C. and Harris, K.E.,
2020. | Health Promotion
Practice | 2020 | 21 | Supp1 | 54S-60S | Excluded | Outcome
type | | Vaping is not a 'safer option' for pregnant women | - | Community
Practitioner | 2020 | 93 | 6 | 13-13 | Excluded | Study design | | Serum proteome and high wattage
e-cigarette vaping: a randomized
crossover study | Chaumont, M., Communi, D.,
Tagliatti, V., Colet, J.M. and
Van de Borne, P. | Journal of
Hypertension | 2021 | 39 | - | e167 | Excluded | Duplicate | | Perceived health effects of vaping
among Hungarian adult e-cigarette-
only and dual users: a cross-sectional
internet survey | Abafalvi, L. and Penzes, M.
and Urban, R. and Foley, K. L.
and Kaan, R. and Kispelyi, B.
and Hermann, P. | BMC Public Health | 2019 | 19 | 1 | 302 | Excluded | Outcome
type | | Diagnosis of EVALI:
General Approach and
the Role of Bronchoscopy | Aberegg, Scott K. and
Maddock, Sean D. and
Blagev, Denitza P. and
Callahan, Sean J. | CHEST | 2020 | 158 | 2 | 820-827 | Excluded | Study design | | A Single-Center, Randomized, Double-Blind, Placebo-Controlled, Two-Part, Dose-Escalation Study to Evaluate the Safety, Tolerability, Pharmacokinetic, and Pharmacodynamic Effects of KER-050 Administered to Healthy, Postmenopausal Women | Synder, B | Australia
New Zealand
Clinicals Trials
Registry | 2019 | - | - | - | Excluded | Exposure
type | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |--|---|--|-------------------|--------|-------|-------|------------------------|---------------------| | Randomized, Double-Blind, Placebo-Controlled, Single and Multiple Ascending Dose Study to Evaluate the Safety, Tolerability and Pharmacokinetics of KER-O47 Administered to Healthy Male Volunteers and Postmenopausal Female Volunteers | Synder, B | Australia
New Zealand
Clinicals Trials
Registry | 2019 | - | - | - | Excluded | Exposure
type | | A Phase I Study to assess Safety,
Tolerability, Pharmacokinetics and
Pharmacodynamics of Single and
Multiple Oral Ascending Doses of
BioE-1115 in Healthy Adult Volunteers | Lickliter, J and
Scharschmidt, BF | Australia
New Zealand
Clinicals Trials
Registry | 2019 | - | - | - | Excluded | Exposure
type | | Safety, Tolerability, Pharmacokinetics and Pharmacodynamics of SIR1-365 | Motwani, P | Australia
New Zealand
Clinicals Trials
Registry | 2019 | - | - | - | Excluded | Exposure
type | | A Phase 1, Open-Label, Four-Period, Two-Sequence, Two-Treatment, Single Dose, Randomized, Crossover Bioequivalence Study of a Test Tablet Formulation of Ravidasvir with the Reference Tablet Formulation of Ravidasvir in Healthy Adult Volunteers Under Fasting Conditions | Ibnou Zekri Lassout, N
and Ng Shi Min, S | Australia
New Zealand
Clinicals Trials
Registry | 2020 | - | - | - | Excluded | Exposure
type | | A Phase 1, Healthy Volunteer Study
to Evaluate the Effect of Differing
Bonding Strengths on the Adhesion
of a Patch Delivery System for
Alzheimer's type Dementia | Rossi, V and Mclendon, K | Australia
New Zealand
Clinicals Trials
Registry | 2020 | - | - | - | Excluded | Exposure
type | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |--|---|--|-------------------|--------|-------|-------|------------------------|---------------------| | A Phase 1, Healthy Volunteer Study
to Evaluate the Effect of Differing
Bonding Strengths on the Adhesion
of a Patch Delivery System for
Alzheimer's type Dementia | Rossi, V and Mclendon, K | Australia
New Zealand
Clinicals Trials
Registry | 2020 | - | - | - | Excluded | Duplicate | | A randomized, double-blind, placebo-controlled investigation of the safety, tolerability and pharmacokinetics of 1% SPL7013 nasal spray in healthy volunteers when administered four times a day for 14 days (1%
SPL7013 nasal spray is intended to help prevent COVID-19) | Paull, J | Australia
New Zealand
Clinicals Trials
Registry | 2020 | - | - | - | Excluded | Exposure
type | | A Phase 1, Healthy Volunteer Study to
Assess a Patch Delivery System for
Alzheimer's type Dementia | Kilfoil, T and Miller, V | Australia
New Zealand
Clinicals Trials
Registry | 2020 | - | - | - | Excluded | Exposure
type | | A Randomized, Single-Dose and
Multiple Dose Dose-Ranging Safety
and Pharmacokinetics Study of
Tacrolimus Powder for Inhalation
in Healthy Adult Subjects | Lickliter, J | Australia
New Zealand
Clinicals Trials
Registry | 2020 | - | - | - | Excluded | Exposure
type | | HARMONY: harm reduction for Opiates, Nicotine and You | Dunlop, A | Australia
New Zealand
Clinicals Trials
Registry | 2021 | - | - | - | Excluded | Outcome
type | | In Vitro Models, Standards,
and Experimental Methods
for Tobacco Products | Aghaloo, T. and Kim, J. J. and
Gordon, T. and Behrsing, H. P.
and Ajiboye, A. S. and
Tomar, S. | Advances in
Dental Research | 2019 | 30 | 1 | 16-21 | Excluded | Exposure
type | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |---|---|---|-------------------|--------|-------|---------|------------------------|-----------------------------------| | E-cigarette use behaviors and device
characteristics of daily exclusive
e-cigarette users in Maryland:
Implications for product toxicity | Aherrera, A. and
Aravindakshan, A. and
Jarmul, S. and Olmedo, P.
and Chen, R. and Cohen, J. E.
and Navas-Acien, A.
and Rule, A. M. | Tobacco Induced
Diseases | 2020 | 18 | - | 93 | Excluded | Duplicate | | Imitating waterpipe:
Another tobacco industry attempt
to create a cigarette that seems safer | Ahmad, Isra and Dutra,
Lauren M. | Addictive
Behaviors | 2019 | 91 | - | 244-252 | Excluded | Exposure
type | | Electronic Cigarettes Prevalence
and Awareness Among
Jordanian Individuals | Al-Balas, Hasan Ibrahim
and Al-Balas, Mahmoud
and Al-Balas, Hamzeh and
Almehaiza, Sumaya and
melhem, Haneen bany and
Al-Balas, Bayan | Journal of
Community Health | 2021 | 46 | 3 | 587-590 | Excluded | Outcome
type | | Severe E-Cigarette, or Vaping,
Product Use Associated
Lung Injury Requiring
Venovenous Extracorporeal
Membrane Oxygenation | Aldy, Kim and Cao,
Dazhe James and McGetrick,
Molly and Willcutts,
David and Verbeck,
Guido and De Silva,
Imesha and Hsu, Stephanie | Pediatric Critical
Care Medicine | 2020 | 21 | 4 | 385-388 | Excluded | Study design | | Effects of electronic cigarettes on health: a systematic review of the available evidence. | Amato, L. and Cruciani, F. and
Solimini, R. and Barca, A. and
Pacifici, R. and Davoli, M. | Recenti Progressi
in Medicina | 2020 | 111 | 1 | 30-43 | Excluded | Duplicate;
foreign
language | | Reducing Tobacco-Related Disability in Chronic Smokers | Ambrose, J. A. and Najafi, A. and Jain, V. and Muller, J. E. and Ranka, S. and Barua, R. S. | American Journal of Medicine | 2020 | 133 | 8 | 908-915 | Excluded | Outcome
type | | Social Influence in the Uptake
and Use of Electronic Cigarettes:
A Systematic Review | Amin, Samia and Dunn,
Adam G. and Laranjo, Liliana | American Journal
of Preventive
Medicine | 2020 | 58 | 1 | 129-141 | Excluded | Outcome
type | Table 4 continued | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |--|---|--|-------------------|--------|-------|-----------|------------------------|---------------------| | Effects of e-cigarette health
warnings and modified risk ad claims
on adolescent e-cigarette craving
and susceptibility | Andrews, J. and Mays, Darren
and Netemeyer, Richard G.
and Burton, Scot and Kees,
Jeremy | Nicotine &
Tobacco Research | 2019 | 21 | 6 | 792-798 | Excluded | Outcome
type | | Exploring e-cigarette policy recommendations and the role of evidence in international public health guidelines: a citation network analysis | Smith, M.J., Skivington, K.,
Hilton, S. and Katikireddi, S.V | The Lancet | 2019 | 394 | - | S4 | Excluded | Study design | | Can e-cigarettes quit smoking safely and effectively? [Chinese] | Yu Shuilian, Liang Lirong | Chinese Journal of Epidemiology | 2020 | 41 | 5 | 799-800 | Excluded | Foreign
language | | ACDS 32nd Annual Meeting Abstracts | - | Dermatitis. Conference: 32nd Annual Meeting of the American Contact Dermatitis Society, ACDS | 2021 | 32 | 3 | - | Excluded | Study design | | Acute and chronic sympathomimetic effects of e-cigarette and tobacco cigarette smoking: Role of nicotine and non-nicotine constituents | Arastoo, S. and
Haptonstall, K. P. and
Choroomi, Y. and
Moheimani R. and Nguyen, K.
and Tran, E. and Gornbein, J.
and Middlekauff, H. R. | American Journal
of Physiology
- Heart and
Circulatory
Physiology | 2020 | 319 | 2 | H262-H270 | Excluded | Exposure
type | | Examining the temporality of vitamin E acetate in illicit THC-containing e-cigarette, or vaping, products from a public health and law enforcement response to EVALI - Utah, 2018-2020 | Arons, Melissa M. and Barnes, Stephen R. and Cheng, Rita and Whittle, Kelly and Elsholz, Christopher and Bui, David and Gilley, Stephen and Maldonado, Alej and ra and LaCross, Nathan and Sage, Kylie and Lewis, Nathaniel and McCaffrey, Keegan and Green, Jordan and Duncan, Janae and Dunn, Angela C. | International
Journal of
Drug Policy | 2021 | 88 | - | 103026 | Excluded | Outcome
type | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |---|--|--|-------------------|--------|-------|---------------|------------------------|---------------------| | Interventions for replacing missing
teeth: alveolar ridge preservation
techniques for dental implant
site development | Atieh, M.A., Alsabeeha, N.H.,
Payne, A.G., Ali, S.,
Clovis Jr, M. and Esposito, M., | Cochrane
Database of
Systematic
Reviews | 2021 | 4 | - | - | Excluded | Outcome
type | | Health Professions Students Transform COVID-19 Learning Challenges into InnovationAssociation of Schools Advancing Health Professions, Live Virtual Series, September 30, 2020 - March 24, 2021 | Austin, Melanie | Journal of
Allied Health | 2021 | - | - | - | Excluded | Study design | | E-cigarette use and combustible tobacco cigarette smoking uptake among non-smokers, including relapse in former smokers: umbrella review, systematic review and meta-analysis | Baenziger, O.N., Ford, L.,
Yazidjoglou, A., Joshy, G.
and Banks, E. | BMJ Open | 2021 | 11 | 3 | e045603 | Excluded | Outcome
type | | Impact of tobacco control interventions on smoking initiation, cessation, and prevalence: A systematic review | Bafunno, D., Catino, A.,
Lamorgese, V., Del Bene, G.,
Longo, V., Montrone, M.,
Pesola, F., Pizzutilo, P.,
Cassiano, S., Mastrandrea, A.
and Ricci, D., Petrillo, P.,
Varesano, N., Zacheo, A.
and Galetta, D. | Journal of
Thoracic Disease | 2020 | 12 | 7 | 3844-
3856 | Excluded | Outcome
type | | Electronic Cigarette (E-Cigarette) Vapor Exposure Alters the Streptococcus pneumoniae Transcriptome in a Nicotine- Dependent Manner without Affecting Pneumococcal Virulence | Bagale, K. and Paudel, S. and
Cagle, H. and Sigel, E. and
Kulkarni, R. | Applied and environmental microbiology | 2020 | 86 | 3 | e02125-19 | Excluded | Outcome
type | Table 4 continued | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |---|---|--|-------------------|--------|-------|-----------|------------------------|---------------------| | Smoking Assessment and Current
Smoking Status Among Adolescents
in Primary Care Settings | Bailey, Steffani R. and
Fankhauser, Katie and Marino,
Miguel and Schmidt,
Teresa and Giebultowicz,
Sophia and Ezekiel-Herrera,
David and Heintzman, John | Nicotine &
Tobacco Research | 2020 | 22 | 11 |
2098-2103 | Excluded | Outcome
type | | Diffuse alveolar damage and e-cigarettes: Case report and review of literature | Bakre, S. A. and Al-Farra, T. S. and Al-Farra, S. | Respiratory
Medicine Case
Reports | 2019 | 28 | - | 100935 | Excluded | Study design | | Evidence-based tobacco-control legislation on e-cigarettes is urgently needed | B and ara, Nilanga Aki and
Wanniarachchi, Senara and
Mehrnoush, Vahid | CMAJ | 2020 | 192 | 3 | E74-E74 | Excluded | Outcome
type | | The influence of waste from electronic cigarettes, conventional cigarettes and heat-not-burn tobacco products on microorganisms | Baran, W. and
Madej-Knysak, D. and
Sobczak, A. and Adamek, E. | Journal of
Hazardous
Materials | 2020 | 385 | - | - | Excluded | Exposure
type | | Hypnotherapy for smoking cessation | Barnes, J. and McRobbie, H.
and Dong, C. Y.
and Walker, N. and
Hartmann-Boyce, J. | Cochrane
Database of
Systematic
Reviews | 2019 | - | 6 | - | Excluded | Outcome
type | | Use of E-Cigarettes and
Self-Reported Lung Disease
Among US Adults | Barrameda, Robelyn
and Nguyen, Trisha and
Wong, Vivian and Castro,
Grettel and Rodriguez de
la Vega, Pura and Lozano,
Juan and Zevallos, Juan | Public Health
Reports | 2020 | 135 | 6 | 785-795 | Excluded | Outcome
type | | An Evaluation of the Knowledge
and Perceptions of Pharmacy
Staff and Pre-Registration
Students of E-Cigarettes Use:
A Systematic Review | Barrett, Ravina and
Aldamkhi, Hajar | Tobacco Use
Insights | 2021 | 14 | - | - | Excluded | Outcome
type | Table 4 continued | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |---|--|--|-------------------|--------|-------|-----------|------------------------|---------------------| | Alcohol use, cigarette smoking, vaping and number of sexual partners: A cross-sectional study of sexually active, ethnically diverse, inner city adolescents | Bartholomew, R.,
Kerry-Barnard, S.,
Beckley-Hoelscher, N.,
Phillips, R., Reid, F.,
Fleming, C., Lesniewska, A.,
Yoward, F. and Oakeshott, P. | Health Expectations: An International Journal of Public Participation in Health Care & Health Policy | 2021 | - | - | - | Excluded | Outcome
type | | E-cigarettes: informing the conversation with patients | Barton, Anna Kate Please
confirm that given names and
surnames/family names have
been identified, correctly | Prescriber | 2021 | 32 | 5 | 21-27 | Excluded | Outcome
type | | Smoking Effects in Foot and Ankle
Surgery: An Evidence-Based Review | Beahrs, T. R. and Reagan, J.
and Bettin, C. C. and
Grear, B. J. and Murphy, G. A.
and Richardson, D. R. | Foot and Ankle
International | 2019 | 40 | 10 | 1226-1232 | Excluded | Outcome
type | | Systematic Review of Electronic
Cigarette Use (Vaping) and
Mental Health Comorbidity among
Adolescents and Young Adults | Becker, T.D., Arnold, M.K.,
Ro, V., Martin, L. and Rice, T.R | Nicotine and
Tobacco Research | 2021 | 23 | 3 | 415-425 | Excluded | Outcome
type | | Examining the effectiveness of general practitioner and nurse promotion of electronic cigarettes versus standard care for smoking reduction and abstinence in hardcore smokers with smoking-related chronic disease: protocol for a randomised controlled trial | Begh, R., Coleman, T.,
Yardley, L., Barnes, R.,
Naughton, F., Gilbert, H.,
Ferrey, A., Madigan, C.,
Williams, N., Hamilton, L.
and Warren, Y. | Trials | 2019 | 20 | 1 | 1-16 | Excluded | Outcome
type | | Nicotine Toxicity Secondary to
Aftermarket Modifications to a
Vaping Device | Bendel, G. S. and Hiller, H. M. and Ralston, A. | Military medicine | 2021 | 11 | - | - | Excluded | Outcome
type | | E-Cigarette Quality Control: Impurity
and Nicotine Level Analysis in
Electronic Cigarette Refill Liquids | Bennani, I., Alami Chentoufi, M.,
El Karbane, M., Cheikh, A.
and Bouatia, M. | Scientific World
Journal | 2020 | - | - | - | Excluded | Exposure
type | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |--|--|---|-------------------|--------|-------|-----------|------------------------|---------------------| | Twenty-Four-Hour Cardiovascular
Effects of Electronic Cigarettes
Compared With Cigarette Smoking
in Dual Users | Benowitz, N.L., St. Helen, G.,
Nardone, N., Addo, N.,
Zhang, J., Harvanko, A.M.,
Calfee, C.S. and Jacob III, P. | Journal of the
American Heart
Association | 2020 | 9 | 23 | e017317 | Excluded | Exposure
type | | Vape Shop Owners/Managers'
Opinions about FDA Regulation
of E-Cigarettes | Berg, C. J. and Barker, D. C.
and Sussman, S. and
Getachew, B. and Pulvers, K.
and Wagener, T. L. and
Hayes, R. B. and Henriksen, L. | Nicotine and
Tobacco Research | 2021 | 23 | 3 | 535-542 | Excluded | Outcome
type | | Randomised, placebo-controlled, double-blind, double-dummy, multicentre trial comparing electronic cigarettes with nicotine to varenicline and to electronic cigarettes without nicotine: the ECSMOKE trial protocol | Berlin, I., Dautzenberg, B.,
Lehmann, B., Palmyre, J.,
Liégey, E., De Rycke, Y.
and Tubach, F. | BMJ open | 2019 | 9 | 5 | e028832 | Excluded | Outcome
type | | Comparison of e-cigarette use characteristics between exclusive e-cigarette users and dual e-cigarette and conventional cigarette users: an on-line survey in France. | Berlin, I., Nalpas, B.,
Targhetta, R. and Perney, P. | Addiction | 2019 | 114 | 12 | 2247-2251 | Excluded | Outcome
type | | Reduced-risk warnings versus the US FDA-mandated addiction warning: The effects of e-cigarette warning variations on health risk perceptions | Berry, Christopher and
Burton, Scot | Nicotine &
Tobacco Research | 2019 | 21 | 7 | 979-984 | Excluded | Outcome
type | | What every dentist needs to know about electronic cigarettes | Bestman, Eugene G. and
Brooks, John K. and Mostoufi,
Behzad and Bashirelahi, Nasir | General Dentistry | 2021 | 69 | 3 | 31-36 | Excluded | Outcome
type | Table 4 continued | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |--|---|--|-------------------|--------|-------|---------|------------------------|---------------------| | A randomized trial comparing the acute coronary, systemic, and environmental effects of electronic vaping cigarettes versus heat-not-burn cigarettes in smokers of combustible cigarettes undergoing invasive coronary assessment: rationale and design of the SUR-VAPES 3 trial | Biondi-Zoccai, G.,
Carnevale, R., Vitali, M.,
Tritapepe, L., Martinelli, O.,
Macrina, F., Bullen, C.,
Peruzzi, M., Cavarretta, E.,
Marullo, A.G. and Abbate, A | Minerva
cardioangiologica | 2020 | - | - | - | Excluded | Outcome
type | | Use of electronic nicotine delivery systems (ENDS) in lesbian, gay, bisexual, transgender and queer persons: Implications for public health nursing | Blackwell, C.W. and
López Castillo, H. | Public Health
Nursing | 2020 | 37 | 4 | 569-580 | Excluded | Outcome
type | | The Role of the School Nurse in Creating a Vape-Free School | Blume, Lisa Frey and Lines,
Shannon | NASN School
Nurse | 2020 | 35 | 3 | 166-172 | Excluded | Outcome
type | | Preconception lifestyle advice for people with infertility | Boedt, T., Vanhove, A.C.,
Vercoe, M.A., Matthys, C.,
Dancet, E. and Fong, S.L. | Cochrane
Database of
Systematic
Reviews | 2021 | - | 4 | - | Excluded | Outcome
type | | Broader impacts of an intervention to transform school environments on student behaviour and school functioning: post hoc analyses from the INCLUSIVE cluster randomised controlled trial | Bonell, C., Dodd, M., Allen, E.,
Bevilacqua, L., McGowan, J.,
Opondo, C., Sturgess, J.,
Elbourne, D., Warren, E. and
Viner, R.M. | BMJ open | 2020 | 10 | 5 | e031589 | Excluded | Outcome
type | | Toxicological assessment of Tobacco
Heating System 2.2: Findings from an
independent peer review | Boue, S. and Schlage, W. K.
and Page, D. and Hoeng, J.
and Peitsch, M. C. | Regulatory
Toxicology and
Pharmacology | 2019 | 104 | - | 115-127 | Excluded | Outcome
type | | Epiglottitis Associated With
Intermittent E-cigarette Use:
The Vagaries of Vaping Toxicity | Bozzella, M.J., Magyar, M.,
DeBiasi, R.L. and Ferrer, K. | Pediatrics | 2020 | 145 | 3 | - | Excluded | Study
design | Table 4 continued | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |---|--|---|-------------------|--------|-------|---------|------------------------|---------------------| | Electronic Cigarette Policy Recommendations: A Scoping Review | Brady, B. R. and
De La Rosa, J. S. and
Nair, U. S. and Leischow, S. J. | American Journal of Health Behavior | 2019 | 43 | 1 | 88-104 | Excluded | Outcome
type | | Answering Questions About
Electronic Cigarettes Using a
Multidisciplinary Model | Brel and , Alison and Balster,
Robert L. and Cobb,
Caroline and Fagan,
Pebbles and Foulds,
Jonathan and Koch, J. R and
y and Lipato, Thokozeni and
Saliba, Najat and Shumei,
Sun and Eissenberg, Thomas | American
Psychologist | 2019 | 74 | 3 | 368-379 | Excluded | Study design | | Bibliometric analysis of electronic cigarette publications: 2003-2018 | Briganti, M. and
Delnevo, C. D. and Brown, L.
and Hastings, S. E. and
Steinberg, M. B. | International Journal of Environmental Research and Public Health | 2019 | 16 | 3 | - | Excluded | Outcome
type | | E-Cigarettes and Other Electronic
Nicotine Delivery Systems (ENDS) | Brown, Amy and Balk,
Sophie J. | Current Problems
in Pediatric &
Adolescent
Health Care | 2020 | 50 | 2 | 100761 | Excluded | Outcome
type | | E-cigarette Use in Prisons With
Recently Established Smokefree
Policies: A Qualitative Interview
Study With People in Custody
in Scotland | Brown, Ashley and O'Donnell,
Rachel and Eadie, Douglas
and Ford, Allison and
Mitchell, Danielle and
Hackett, Alison and Sweeting,
Helen and Bauld, Linda and
Hunt, Kate | Nicotine &
Tobacco Research | 2021 | 23 | 6 | 939-946 | Excluded | Outcome
type | | Initial Views and Experiences of
Vaping in Prisons: A Qualitative
Study With People in Custody
Preparing for the Imminent
Implementation of Scotland's
Prison Smokefree Policy | Brown, Ashley and O'Donnell,
Rachel and Eadie, Douglas
and Purves, Richard and
Sweeting, Helen and Ford,
Allison and Bauld, Linda and
Hunt, Kate | Nicotine &
Tobacco Research | 2021 | 23 | 3 | 543-549 | Excluded | Outcome
type | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |--|---|--|-------------------|--------|-------|---------|------------------------|--------------------------------------| | Tobacco harm reduction: are smokers becoming more hardcore? | Buchanan, T. and Magee,
C. A. and H, V. See and
Kelly, P. J. | Journal of Public
Health Policy | 2020 | 41 | 3 | 286-302 | Excluded | Outcome
type | | Electronic cigarette refill liquids:
Nicotine content, presence of
child-resistant packaging, and
in-shop compounding | Buettner-Schmidt, K.,
Miller, D.R., Orr, M.,
Balasubramanian, N.,
Rykal, K., Steward, K.F.,
Swanson, K. and Berry, M | Journal of pediatric nursing | 2021 | 59 | - | 45-54 | Excluded | Outcome
type | | Human lungs are created to
breathe clean air: the questionable
quantification of vaping safety
"95% less harmful" | Burrowes, Kelly S. and
Beckert, Lutz and Jones,
Stuart | New Zealand
Medical Journal | 2020 | 133 | 1517 | 100-106 | Excluded | Study design | | Lifestyle modifications for
nonalcohol-related fatty liver
disease: a network meta-analysis. | Buzzetti, E., Linden, A.,
Best, L.M., Madden, A.M.,
Roberts, D., Chase, T.J.,
Freeman, S.C., Cooper, N.J.,
Sutton, A.J., Fritche, D. and
Milne, E.J. | Cochrane
Database of
Systematic
Reviews | 2021 | - | 6 | - | Excluded | Outcome
type;
exposure
type | | Pharmacological treatment for Buerger's disease | Cacione, D. G. and
Macedo, C. R. and
do Carmo Novaes, F. and
Baptista-Silva, J. C. C. | Cochrane
Database of
Systematic
Reviews | 2020 | - | 5 | - | Excluded | Exposure
type | | The actual and anticipated effects of a menthol cigarette ban: a scoping review | Cadham, C.J.,
Sanchez-Romero, L.M.,
Fleischer, N.L., Mistry, R.,
Hirschtick, J.L., Meza, R.
and Levy, D.T. | BMC Public Health | 2020 | 20 | 1 | 1-17 | Excluded | Outcome
type | | Association of nicotine with osteochondrogenesis and osteoarthritis development: The state of the art of preclinical research | Cai, X. and Gao, L. and
Cucchiarini, M. and Madry, H. | Journal of Clinical
Medicine | 2019 | 8 | 10 | - | Excluded | Exposure
type | Table 4 continued | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |---|--|---|-------------------|--------|-------|-----------|------------------------|-------------------------------| | Factors influencing the uptake
and use of nicotine replacement
therapy and e-cigarettes in pregnant
women who smoke: a qualitative
evidence synthesis | Campbell, K.,
Coleman-Haynes, T.,
Bowker, K., Cooper, S.E.,
Connelly, S. and Coleman, T | Cochrane
Database of
Systematic
Reviews | 2020 | 5 | - | - | Excluded | Duplicate;
outcome
type | | Immediate-release methylphenidate
for attention deficit hyperactivity
disorder (ADHD) in adults | Cândido, R.C.F.,
de Padua, C.A.M., Golder, S.
and Junqueira, D.R | Cochrane
Database of
Systematic
Reviews | 2021 | - | 1 | - | Excluded | Outcome
type | | Invited review: human air-liquid-interface organotypic airway tissue models derived from primary tracheobronchial epithelial cells-overview and perspectives | Cao, X., Coyle, J.P.,
Xiong, R., Wang, Y.,
Heflich, R.H., Ren, B.,
Gwinn, W.M., Hayden, P. and
Rojanasakul, L. | In vitro cellular & developmental biology | 2020 | - | | 1-29 | Excluded | Outcome
type | | A Single-Arm, Open-Label, Pilot, and
Feasibility Study of a High Nicotine
Strength E-Cigarette Intervention for
Smoking Cessation or Reduction for
People With Schizophrenia Spectrum
Disorders Who Smoke Cigarettes | Caponnetto, P., DiPiazza, J.,
Kim, J., Maglia, M. and
Polosa, R. | Nicotine & tobacco research: official journal of the Society for Research on Nicotine and Tobacco | 2021 | 23 | 7 | 1113-1122 | Excluded | Outcome
type | | Efficacy of smoking cessation with
varenicline plus counselling for
e-cigarettes users (VAREVAPE):
a protocol for a randomized
controlled trial | Caponnetto, P. and Maglia, M. and Polosa, R. | Contemporary
clinical trials
communications | 2019 | 15 | - | - | Excluded | Outcome
type | | Use of electronic nicotine
delivery systems (ENDS) by
pregnant women I: Risk of
small-for-gestational-age birth | Cardenas, V.M., Cen, R.,
Clemens, M.M., Moody, H.L.,
Ekanem, U.S., Policherla, A.,
Fischbach, L.A.,
Eswaran, H., Magann, E.F.,
Delongchamp, R.R. and
Boysen, G | Tobacco Induced
Diseases | 2019 | 17 | - | - | Excluded | Outcome
type | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |---|--|--|-------------------|--------|-------|---------|------------------------|---------------------| | The use of electronic nicotine delivery systems during pregnancy and the reproductive outcomes: A systematic review of the literature | Cardenas, V. M. and
Fischbach, L. A. and
Chowdhury, P. | Tobacco Induced
Diseases | 2019 | 17 | - | - | Excluded | Outcome
type | | Sensory effects of nicotine and tobacco | Carstens, E. E. and
Carstens, M. I. | Nicotine & tobacco research: official journal of the Society for Research on Nicotine and Tobacco. | 2021 | 6 | - | - | Excluded | Exposure
type | | Investigating the role of familial and
peer-related factors on electronic
nicotine delivery systems (ENDS)
use among U.S. adolescents | Cavazos-Rehg, P., Li, X.,
Kasson, E., Kaiser, N.,
Borodovsky, J. and
Grucza, R.A. | Journal of
Adolescence | 2021 | 87 | - | 98-105 | Excluded | Outcome
type | | Predicting vaping uptake, vaping frequency and ongoing vaping among daily smokers using longitudinal data from the International Tobacco Control (ITC) Four Country Surveys | Chan, G., Morphett, K.,
Gartner,
C., Leung, J.,
Yong, H.H., Hall, W. and
Borland, R., | Addiction | 2019 | 114 | - | 61-70 | Excluded | Outcome
type | | A systematic review of randomized controlled trials and network meta-analysis of e-cigarettes for smoking cessation | Chan, G.C., Stjepanović, D.,
Lim, C., Sun, T.,
Anandan, A.S., Connor, J.P.,
Gartner, C., Hall, W.D. and
Leung, J. | Addictive
Behaviors | 2021 | - | - | 106912 | Excluded | Outcome
type | | Gateway or common liability? A systematic review and meta-analysis of studies of adolescent e-cigarette use and future smoking initiation | Chan, G.C., Stjepanović, D.,
Lim, C., Sun, T., Shanmuga
Anandan, A., Connor, J.P.,
Gartner, C., Hall, W.D. and
Leung, J. | Addiction | 2021 | 116 | 4 | 743-756 | Excluded | Outcome
type | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |--|---|---|-------------------|--------|-------|-----------|------------------------|---------------------| | Electronic nicotine delivery system (ENDS) liquid nicotine exposure in young children presenting to US emergency departments, 2018 | Chang, J. T. and Rostron, B. L. | Injury
Epidemiology | 2019 | 6 | 1 | - | Excluded | Exposure
type | | National estimates of poisoning
events related to liquid nicotine in
young children treated in US hospital
emergency departments, 2013-2017 | Chang, J.T., Wang, B.,
Chang, C.M. and
Ambrose, B.K. | Injury
Epidemiology | 2019 | 6 | 1 | 1-6 | Excluded | Exposure
type | | National Estimates of ENDS Liquid
Nicotine Exposures, U.S., 2013-2017 | Chang, J.T., Wang, B.,
Rostron, B.L., Chen, L.H.,
Schroeder, T.J., Mah, J.C.,
Chang, C.M. and
Ambrose, B.K., | American Journal
of Preventive
Medicine | 2020 | 59 | 5 | 742-745 | Excluded | Exposure
type | | Effectiveness of an educational intervention on health risks of vaping for high school-aged adolescents | Chaplin, M.D., Brogie, J.,
Burch, A., Hetzler, J.,
Hough, D., Gustafson, B.,
Gray, M. and Gillette, C. | Journal of
the American
Pharmacists
Association:
JAPhA | 2020 | 60 | 6 | e158-e161 | Excluded | Outcome
type | | The novel CYP2A6 inhibitor,
DLCI-1, decreases nicotine
self-administration in mice | Chen, Y.C., Fowler, J.P.,
Wang, J., Watson, C.J.,
Sherafat, Y., Staben, A.,
Lazarus, P., Denton, T.T.
and Fowler, C.D | Journal of
Pharmacology
and Experimental
Therapeutics | 2020 | 372 | 1 | 21-29 | Excluded | Exposure
type | | Electronic cigarette exposure reduces exercise performance and changes the biochemical profile of female mice | Chen, Y.M., Huang, C.C.,
Sung, H.C., Lee, M.C.
and Hsiao, C.Y. | Bioscience,
biotechnology,
and biochemistry | 2019 | 83 | 12 | 2318-2326 | Excluded | Outcome
type | | 전자담배와 가열담배의 국제적 규제정책 비교 | Cheol Min, Lee | Journal of the
Korean Medical
Association /
Taehan Uisa
Hyophoe Chi | 2020 | 63 | 2 | 113-118 | Excluded | Foreign
language | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |---|--|---|-------------------|--------|-------|---------------|------------------------|---------------------| | Comparison of the risks of combustible cigarettes, e-cigarettes, and heated tobacco products | Cho, H. J. | Journal of the
Korean Medical
Association | 2020 | 63 | 2 | 96-104 | Excluded | Foreign
language | | The Case of the Nicotine Nightmare | Christensen, Deborah | ONS Voice | 2019 | 34 | 10 | 35-35 | Excluded | Exposure type | | Vaping-Induced Acute Lung Injury | Christiani, David C. | New England
Journal of
Medicine | 2020 | 382 | 10 | 960-962 | Excluded | exposure
type | | Ηλεκτρονικό τσιγάρο και καρδιαγγειακές
νόσοι | Christina, O., Konstantinos, N. and Konstantinos, K., | Rostrum of
Asclepius / Vima
tou Asklipiou | 2021 | 20 | 1 | 31-43 | Excluded | Foreign
language | | Electronic Cigarette Vapor with
Nicotine Causes Airway Mucociliary
Dysfunction Preferentially via
TRPA1 Receptors | Chung, S., Baumlin, N.,
Dennis, J.S., Moore, R.,
Salathe, S.F., Whitney, P.L.,
Sabater, J., Abraham, W.M.,
Kim, M.D. and Salathe, M. | American Journal
of Respiratory
& Critical Care
Medicine | 2019 | 200 | 9 | 1134-1145 | Excluded | Exposure
type | | CrossTalk opposing view:
E-cigarettes expose users to adverse
effects of vapours and the potential
for nicotine addiction | Chung, S., Bengtson, C.D.,
Kim, M.D. and Salathe, M. | Journal of
Physiology | 2020 | 598 | 15 | 3053-
3056 | Excluded | Study design | | Novel tobacco products including electronic cigarette and heated tobacco products increase risk of allergic rhinitis and asthma in adolescents: Analysis of Korean youth survey | Chung, S.J., Kim, B.K.,
Oh, J.H., Shim, J.S.,
Chang, Y.S., Cho, S.H.
and Yang, M.S. | Allergy: European
Journal of Allergy
and Clinical
Immunology | 2020 | 75 | 7 | 1640-1648 | Excluded | Outcome
type | | Pharmacological interventions for promoting smoking cessation during pregnancy | Claire, R., Chamberlain, C.,
Davey, M.A., Cooper, S.E.,
Berlin, I., Leonardi-Bee, J.
and Coleman, T | Cochrane
Database of
Systematic
Reviews | 2020 | - | 3 | - | Excluded | Outcome
type | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |--|---|---------------------------------------|-------------------|--------|-------|-----------|------------------------|-----------------------------------| | Use of electronic nicotine delivery systems by pregnant women II: Hair biomarkers for exposures to nicotine and tobacco-specific nitrosamines | Clemens, M.M., Cardenas, V.M., Fischbach, L.A., Cen, R., Siegel, E.R., Eswaran, H., Ekanem, U.S., Policherla, A., Moody, H.L., Magann, E.F. and Boysen, G. | Tobacco Induced
Diseases | 2019 | 17 | - | - | Excluded | Exposure
type | | Effect of an electronic nicotine delivery system with 0, 8, or 36 mg/mL liquid nicotine versus a cigarette substitute on tobacco-related toxicant exposure: a four-arm, parallel-group, randomised, controlled trial | Cobb, C.O., Foulds, J.,
Yen, M.S., Veldheer, S.,
Lopez, A.A., Yingst, J.M.,
Bullen, C., Kang, L.,
Eissenberg, T., Allen, S.I.
and Brosnan, P. | The Lancet
Respiratory
Medicine | 2021 | - | - | - | Excluded | Exposure
type | | Characteristics of Urban Inpatient
Smokers With and Without Chronic
Pain: Foundations for Targeted
Cessation Programs | Cody, Gwendolyn R. and
Wang, Binhuan and Link,
Alissa R. and Sherman,
Scott E. | Substance
Use & Misuse | 2019 | 54 | 7 | 1138-1145 | Excluded | Outcome
type | | E-cigarette marketing and communication: How E-Cigarette Companies Market E-Cigarettes and the Public Engages with E-cigarette Information | Collins, L., Glasser, A.M.,
Abudayyeh, H., Pearson, J.L.
and Villanti, A.C. | Nicotine and
Tobacco Research | 2019 | 21 | 1 | 14-24 | Excluded | Outcome
type | | Harm reduction treatment for
smoking (HaRT-S): findings from a
single-arm pilot study with smokers
experiencing chronic homelessness | Collins, S.E., Nelson, L.A.,
Stanton, J., Mayberry, N.,
Ubay, T., Taylor, E.M.,
Hoffmann, G., Goldstein, S.C.,
Saxon, A.J., Malone, D.K. and
Clifasefi, S.L. | Substance Abuse | 2019 | 40 | 2 | 229-239 | Excluded | Outcome
type | | Cigarette smoke and nicotine during pregnancy : where are we today? | Colomb, C., Blanchon, S. and
Barazzone-Argiroffo, C. | Revue Medicale
Suisse | 2020 | 16 | 682 | 357-360 | Excluded | Duplicate;
foreign
language | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |--|--|--|-------------------|--------|-------|---------|------------------------|---------------------| | Nonsmokers May Benefit from Lower
Doses of an Oral 17β-Estradiol/
Progesterone Capsule - | Constantine, G. D. and
Santoro, N. and Graham, S.
and Bernick, B. and Mirkin, S. | Menopause | 2019 | - | - | - | Excluded | Outcome
type | | Data from the REPLENISH Trial | | | | | | | | | | Electronic cigarettes: weighing up the evidence | Cope, Graham | Practice Nursing | 2019 | 30 | 6 | 288-291 | Excluded | Exposure
type | | E-cigarettes and wound healing | Cope, Graham | Wounds UK | 2020 | 16 | 1
| 34-37 | Excluded | Outcome
type | | Electronic cigarettes:
a clinical perspective | Cope, Graham | Independent
Nurse | 2020 | 2020 | 1 | 42705 | Excluded | Study design | | Systematic Review of Health
Communication for Non-Cigarette
Tobacco Products | Cornacchione Ross, J.,
Noar, S.M. and Sutfin, E.L. | Health
Communication | 2019 | 34 | 3 | 361-369 | Excluded | Outcome
type | | People smoke for nicotine, but lose sexual and reproductive health for tar: a narrative review on the effect of cigarette smoking on male sexuality and reproduction | Corona, G., Sansone, A.,
Pallotti, F., Ferlin, A.,
Pivonello, R., Isidori, A.M.,
Maggi, M. and Jannini, E.A. | Journal of
Endocrinological
Investigation | 2020 | - | - | 1-18 | Excluded | Outcome
type | | Drugs for preventing lung cancer in healthy people | Cortés-Jofré, M., Rueda, J.R.,
Asenjo-Lobos, C., Madrid, E.
and Cosp, X.B. | Cochrane
Database of
Systematic
Reviews | 2020 | 3 | - | - | Excluded | Exposure
type | | Vascular effects of a single bout of electronic cigarette use | Cossio, R., Cerra, Z.A.
and Tanaka, H | Clinical and
Experimental
Pharmacology
and Physiology | 2020 | 47 | 1 | 3-6 | Excluded | Outcome
type | | Telerehabilitation for chronic respiratory disease | Cox, N.S., Dal Corso, S.,
Hansen, H., McDonald, C.F.,
Hill, C.J., Zanaboni, P.,
Alison, J.A., O'Halloran, P.,
Macdonald, H. and
Holland, A.E. | Cochrane
Database of
Systematic
Reviews | 2021 | - | 1 | - | Excluded | Outcome
type | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |--|--|--|-------------------|--------|-------|-----------|------------------------|---------------------| | The Time Course of Compensatory Puffing With an Electronic Cigarette: Secondary Analysis of Real-World Puffing Data With High and Low Nicotine Concentration Under Fixed and Adjustable Power Settings | Cox, S., Goniewicz, M.L.,
Kosmider, L., McRobbie, H.,
Kimber, C. and Dawkins, L. | Nicotine &
Tobacco Research | 2021 | 23 | 7 | 1153-1159 | Excluded | Outcome
type | | Chronic nausea and vomiting:
Sifting through the smoke and weed | Coyle, W. J. | American
Journal of
Gastroenterology | 2019 | 114 | 11 | 1704-1706 | Excluded | Outcome
type | | Interventions for improving
medication-taking ability and
adherence in older adults prescribed
multiple medications | Cross, A. J. and Elliott, R. A. and Petrie, K. and Kuruvilla, L. and George, J. | Cochrane
Database of
Systematic
Reviews | 2020 | - | 5 | - | Excluded | Exposure
type | | Compare the Efficacy and Safety
of Budesonide and Formoterol
Fumarate Dihydrate Inhalation
Aerosol 80/4.5 mcg per Actuation
in Asthma patients | Dodia, S and Chowdhary, P | Clinical Trials
Registry India | 2019 | - | - | - | Excluded | Outcome
type | | Study to compare the efficacy
and safety of Deflazacort tablets
versus Prednisolone Tablets versus
Methylprednisolone Tablets in
patients with Chronic Obstructive
Pulmonary Disease (COPD) | - | Clinical Trials
Registry India | 2020 | - | - | - | Excluded | Outcome
type | | A clinical study to evaluate the
Efficacy and safety of Generic
Fluticasone Propionate Inhalation
Aerosol (pMDI, HFA 134a) in patients
with Bronchial Asthma | - | Clinical Trials
Registry India | 2021 | - | - | - | Excluded | Outcome
type | | Case report: The role of spatial repellant devices to prevent malaria in low-income countries | Cucchiaro, G. and
van Leeuwen, J. and
Goodridge, Y. | American Journal
of Tropical
Medicine and
Hygiene | 2020 | 102 | 5 | 1033-1036 | Excluded | Study design | Table 4 continued | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |---|--|---|-------------------|--------|-------|---------|------------------------|--------------------------------------| | Dual Use of Electronic Cigarettes
and Traditional Cigarettes Among
Adults: Psychosocial Correlates and
Associated Respiratory Symptoms | Culbreth, R.E., Spears, C.A.,
Brandenberger, K.,
Feresin, R., Self-Brown, S.,
Goodfellow, L.T., Swahn, M.H.
and Gardenhire, D.S. | Respiratory care | 2021 | 66 | 6 | 951-959 | Excluded | Outcome
type | | Impact of Smoking and Smoking
Cessation Medications in Aviators | Dailey, J. I. and Wilson, K. C. | Current Psychiatry
Reports | 2019 | 21 | 12 | - | Excluded | Outcome
type | | Electronic cigarettes and cardiovascular risk: Caution waiting for evidence | D'Amario, D., Migliaro, S.,
Borovac, J.A., Vergallo, R.,
Galli, M., Restivo, A.,
Bonini, M., Romagnoli, E.,
Leone, A.M. and Crea, F. | European
Cardiology
Review | 2019 | 14 | 3 | 151-158 | Excluded | Outcome
type | | Systematic analysis of the scientific literature on heated tobacco | Dautzenberg, B. and
Dautzenberg, M. D. | Revue des
Maladies
Respiratoires | 2019 | 36 | 1 | 82-103 | Excluded | Foreign
language | | iQOS: evidence of pyrolysis and release of a toxicant from plastic | Davis, B., Williams, M. and Talbot, P. | Tobacco control | 2019 | 28 | 1 | 34-41 | Excluded | Exposure
type | | Differences in JUUL Appeal Among
Past and Current Youth JUUL Users | Davis, D.R., Krishnan-Sarin, S.,
Bold, K.W., Morean, M.E.,
Jackson, A., Camenga, D.
and Kong, G. | Nicotine & tobacco research: Official Journal of the Society for Research on Nicotine and Tobacco | 2021 | 23 | 5 | 807-814 | Excluded | Outcome
type | | Novel methods for the analysis of
toxicants in bronchoalveolar lavage
fluid samples from e-cigarette, or
vaping, product use associated lung
injury (EVALI) cases: Terpenes | De Jesús, V.R.,
Chambers, D.M., Reese, C.,
Braselton, M., Espinosa, P.,
Corstvet, J. and Blount, B.C. | Rapid
communications
in mass
spectrometry:
RCM | 2020 | 34 | 19 | e8879 | Excluded | Duplicate | | Topical cyclosporine A therapy for dry eye syndrome | de Paiva, C. S. and
Pflugfelder, S. C. and
Ng, S. M. and Akpek, E. K. | Cochrane
Database of
Systematic
Reviews | 2019 | - | 9 | - | Excluded | Outcome
type;
exposure
type | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |---|--|---|-------------------|--------|-------|-----------------|------------------------|---------------------| | E-Cigarette Burns and Explosions:
What are the Patterns of
Oromaxillofacial Injury? | Dekhou, A. and Oska, N. and
Partiali, B. and Johnson, J.
and Chung, M. T. and
Folbe, A. | Journal of Oral
and Maxillofacial
Surgery | 2021 | - | - | - | Excluded | Outcome
type | | Smoking and pregnancy: The era of electronic nicotine delivery systems | Desai, Nikita | Obstetric
Medicine
(1753-495X) | 2020 | 13 | 4 | 154-158 | Excluded | Outcome
type | | E-cigarette manufacturers'
compliance with clinical trial
reporting expectations: a case series
of registered trials by Juul Labs | DeVito, N. J. and Drysdale, H. and McKee, M. and Goldacre, B. | Tobacco control. | 2021 | 14 | - | - | Excluded | Study design | | Patterns of e-cigarette use,
biochemically verified smoking
status and self-reported changes in
health status of a random sample of
vapeshops customers in Greece | Diamantopoulou, E.,
Barbouni, A., Merakou, K.,
Lagiou, A. and Farsalinos, K. | Internal and
emergency
medicine | 2019 | 14 | 6 | 843-851 | Excluded | Outcome
type | | Vaping, smoking, and the physical fitness of active young men | Dinkeloo, E., Grier, T.L.,
Brooks, R.D. and Jones, B.H. | American Journal of Preventive Medicine | 2020 | 58 | 1 | e31-e37 | Excluded | Outcome
type | | Smoking Addiction and
Strategies for Cessation | DiSilvio, Briana and
Baqdunes, Mohammad and
Alhajhusain, Ahmad and
Cheema, Tariq | Critical Care
Nursing Quarterly | 2021 | 44 | 1 | 33-48 | Excluded | Outcome
type | | Cytisine for smoking cessation in patients with tuberculosis: a multicentre, randomised, double-blind, placebo-controlled phase 3 trial | Dogar, O., Keding, A.,
Gabe, R., Marshall, A.M.,
Huque, R., Barua, D.,
Fatima, R., Khan, A., Zahid, R.,
Mansoor, S. and Kotz, D. | The Lancet
Global Health | 2020 | 8 | 11 | e1408-
e1417 | Excluded | Outcome
type | | A content analysis of e-cigarette related calls to the Shanghai health hotline, for the period 2014-2019 | Dong, J., Dong, J., Zhang, Y.,
He, Z., Shi, L. and Cai, Y. | Tobacco Induced
Diseases | 2021 | 19 | - | - | Excluded | Outcome
type | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion
reason(s) | |---|--|--|-------------------|--------|-------|-----------|------------------------|---------------------| | The Harmful Consequences of Vaping: A Public Health Threat | Douglass, Brenda and
Solecki, Susan and Fay-Hillier,
Theresa | Journal of
Addictions
Nursing | 2020 | 31 | 2 | 79-84 | Excluded | Outcome
type | | Perceived safety and effectiveness
of electronic cigarettes among
malaysian adults and public support
for regulations | Draman, S., Ab Rahman, N.S.,
Mohamed, M.H.N., Ab
Rahman, J. and Kartiwi, M. | Journal of
Pharmacy and
Bioallied Sciences | 2020 | 12 | Supp2 | S718-S727 | Excluded | Outcome
type | | Parental Smoking and E-cigarette
Use in Homes and Cars | Drehmer, J.E., Nabi-Burza, E.,
Walters, B.H., Ossip, D.J.,
Levy, D.E., Rigotti, N.A.,
Klein, J.D. and Winickoff, J.P. | Pediatrics | 2019 | 143 | 4 | - | Excluded | Outcome
type | | Retrospective review of nicotine exposures in California from 2012 to 2018 and analysis of the impacts of e-cigarette regulations | Driller, G. and Plasencia, E. and Apollonio, D. E. | BMJ Open | 2021 | 11 | 3 | - | Excluded | Outcome
type | | Human Biomarker Exposure
From Cigarettes Versus Novel
Heat-Not-Burn Devices: A Systematic
Review and Meta-Analysis | Drovandi, A., Salem, S.,
Barker, D., Booth, D. and
Kairuz, T | Nicotine &
Tobacco Research | 2020 | 22 | 7 | 1077-1085 | Excluded | Exposure
type | | Changes in flavor preference in a cohort of long-term electronic cigarette users | Du, P., Bascom, R., Fan, T.,
Sinharoy, A., Yingst, J.,
Mondal, P. and Foulds, J. | Annals of the
American
Thoracic Society | 2020 | 17 | 5 | 573-581 | Excluded | Outcome
type | | "Isn't there a bunch of side effects?":
A focus group study on the beliefs
about cessation treatments of
non-college educated young
adult smokers | Duarte, D.A., Chen-
Sankey, J.C., Dang, K.,
Orozco, L., Jewett, B.
and Choi, K. | Journal of
Substance Abuse
Treatment | 2020 | 112 | - | 36-41 | Excluded | Outcome
type | | Correction to Free-Base Nicotine
Determination in Electronic Cigarette
Liquids by 1H NMR Spectroscopy. | Duell, A.K., Pankow, J.F.
and Peyton, D.H. | Chemical
Research in
Toxicology | 2019 | 32 | 9 | 1900 | Excluded | Publication
year | Table 4 continued | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |--|---|--|-------------------|--------|-------|-----------|------------------------|---------------------| | An approach for the extract
generation and toxicological
assessment of tobacco-free 'modern'
oral nicotine pouches | Bishop, E., East, N., Bozhilova, S., Santopietro, S., Smart, D., Taylor, M., Meredith, S., Baxter, A., Breheny, D., Thorne, D. and Gaca, M. | Food & Chemical
Toxicology | 2020 | 145 | - | 111713 | Excluded | Exposure
type | | Vaping-induced diffuse
alveolar hemorrhage | Edmonds, P. J. and Copel and , C. and Conger, A. and Richmond, B. W. | Respiratory
Medicine
Case Reports | 2020 | 29 | - | - | Excluded | Study design | | Views and preferences of people living with HIV about smoking, quitting and use of nicotine products | Edwards, S., Fitzgerald, L.,
Mutch, A., Dean, J.A., Ford, P.,
Howard, C., Watts, P. and
Gartner, C. | International
Journal of
Drug Policy | 2021 | 97 | - | - | Excluded | Outcome
type | | "Use of e-cigarettes for smoking cessation" - Reply | Eisenberg, M.J.,
Hébert-Losier, A.
and Filion, K.B. | JAMA: Journal
of the American
Medical
Association | 2021 | 325 | 10 | 1006-1007 | Excluded | Outcome
type | | Effect of e-cigarettes plus counseling vs counseling alone on smoking cessation: A randomized clinical trial | Eisenberg, M.J., Hébert-Losier, A., Windle, S.B., Greenspoon, T., Brandys, T., Fülöp, T., Nguyen, T., Elkouri, S., Montigny, M., Wilderman, I. and Bertrand, O.F. | JAMA: Journal
of the American
Medical
Association | 2020 | 324 | 18 | 1844-1854 | Excluded | Outcome
type | | Heating of food containing sucralose might result in the generation of potentially toxic chlorinated compounds | Eisenreich, A., Gürtler, R. and Schäfer, B. | Food Chemistry | 2020 | 321 | - | - | Excluded | Outcome
type | | Subjective smoking satisfaction
between heat-not-burn, electronic
vaping, and traditional tobacco
combustion cigarettes: a sub-analysis
of the SUR-VAPES 2 trial | Elena Cavarretta E,
Sciarretta S, Nocella C,
Peruzzi M, Marullo AGM,
Loffredo L, Pignatelli P,
Valenti V, Coluzzi F, Frati G,
Biondi-Zoccai G, Carnevale R | European journal
of preventive
cardiology | 2019 | 26 | 8 | S114 | Excluded | Outcome
type | Table 4 continued | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |---|--|--|-------------------|--------|-------|-----------|------------------------|---------------------| | Toxic emissions resulting from sucralose added to electronic cigarette liquids | El-Hage, R., El-Hellani, A.,
Haddad, C., Salman, R.,
Talih, S., Shihadeh, A.,
Eissenberg, T. and Aoun
Saliba, N. | Aerosol Science
and Technology | 2019 | 53 | 10 | 1197-1203 | Excluded | Exposure
type | | Lower smoking rates and increased perceived harm of cigarettes among French adults one year after comprehensive tobacco control measures | El-Khoury, F., Bolze, C.,
Gomajee, R., White, V.
and Melchior, M. | Drug and Alcohol
Dependence | 2019 | 201 | - | 65-70 | Excluded | Outcome
type | | Nicotine vaping products as a harm reduction tool among smokers:
Review of evidence and implications for pharmacy practice | Erku, Daniel and Gartner,
Coral E. and Morphett, Kylie
and Snoswell, Centaine L.
and Steadman, Kathryn J. | Research in Social
& Administrative
Pharmacy | 2020 | 16 | 9 | 1272-1278 | Excluded | Outcome
type | | Does the content and source credibility of health and risk messages related to nicotine vaping products have an impact on harm perception and behavioural intentions? A systematic review | Erku, D. A. and Bauld, L. and
Dawkins, L. and Gartner, C. E.
and Steadman, K. J. and
Noar, S. M. and Shrestha, S.
and Morphett, K. | Addiction | 2021 | 10 | - | - | Excluded | Outcome
type | | Electronic nicotine delivery systems
(e-cigarettes) as a smoking cessation
aid: A survey among pharmacy staff
in Queensland, Australia | Erku, Daniel A. and Gartner,
Coral E. and Do, Jennifer
Thi and Morphett, Kylie and
Steadman, Kathryn J. | Addictive
Behaviors | 2019 | 91 | - | 227-233 | Excluded | Outcome
type | | Beliefs and Self-reported Practices of
Health Care Professionals Regarding
Electronic Nicotine Delivery Systems:
A Mixed-Methods Systematic Review
and Synthesis | Erku, Daniel A. and Gartner,
Coral E. and Morphett, Kylie
and Steadman, Kathryn J. | Nicotine &
Tobacco Research | 2020 | 22 | 5 | 619-629 | Excluded | Outcome
type | | Nicotine vaping product use, harm perception and policy support among pharmacy customers in Brisbane, Australia | Erku, Daniel A. and Gartner,
Coral E. and Tengphakwaen,
Unchanok and Morphett,
Kylie and Steadman,
Kathryn J. | Drug & Alcohol
Review | 2019 | 38 | 6 | 703-711 | Excluded | Outcome
type | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |--|---|---|-------------------|--------|-------|---------------|------------------------|---------------------| | Framing and scientific uncertainty in nicotine vaping product regulation: An examination of competing narratives among health and medical organisations in the UK, Australia and New Zealand | Erku, D.A., Kisely, S.,
Morphett, K., Steadman, K.J.
and Gartner, C.E. | International
Journal of
Drug Policy | 2020 | 78 | - | 102699 | Excluded | Outcome
type | | How are nicotine vaping products represented to pharmacists? A content analysis of Australian pharmacy news sources | Erku, Daniel A. and Zhang,
Rebecca and Gartner,
Coral E. and Morphett,
Kylie and Steadman,
Kathryn J. | International
Journal of
Pharmacy Practice | 2020 | 28 | 4 | 390-394 | Excluded |
Outcome
type | | Quantification of Flavorants and
Nicotine in Waterpipe Tobacco and
Mainstream Smoke and Comparison
to E-cigarette Aerosol | Erythropel, Hanno C. and Torres, Deyri S. Garcia and Woodrow, Jackson G. and Winter, Tamara M. de and Falinski, Mark M. and Anastas, Paul T. and O'Malley, Stephanie S. and Krishnan-Sarin, Suchitra and Zimmerman, Julie B. and Garcia Torres, Deyri S. and de Winter, Tamara M. | Nicotine &
Tobacco Research | 2021 | 23 | 3 | 600-604 | Excluded | Outcome
type | | Chronic intermittent electronic cigarette exposure induces cardiac dysfunction and atherosclerosis in apolipoprotein-E knockout mice | Espinoza-Derout, J., Hasan, K.M., Shao, X.M., Jordan, M.C., Sims, C., Lee, D.L., Sinha, S., Simmons, Z., Mtume, N., Liu, Y. and Roos, K.P., Sinha-Hikim, A. P. and Friedman, T. C. | American Journal
of Physiology
- Heart and
Circulatory
Physiology | 2019 | 317 | 2 | H445-
H459 | Excluded | Outcome
type | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |---|--|---|-------------------|--------|-------|-----------|------------------------|---------------------| | Hepatic DNA damage induced by electronic cigarette exposure is associated with the modulation of NAD+/PARP1/SIRT1 axis | Espinoza-Derout, J. and
Shao, X. M. and Bankole, E.
and Hasan, K. M. and
Mtume, N. and Liu, Y. and
Sinha-Hikim, A. P. and
Friedman, T. C. | Frontiers in
Endocrinology | 2019 | 10 | - | - | Excluded | Exposure
type | | Are long-term vapers interested in vaping cessation support? | Etter, J.F. | Addiction | 2019 | 114 | 8 | 1473-1477 | Excluded | Outcome
type | | Study to assess the efficacy, safety,
and tolerability of SAR440340/
REGN3500/itepekimab in chronic
obstructive pulmonary disease
(COPD) (AERIFY-2) | - | European Union
Clinical Trials
Register | 2021 | - | - | - | Excluded | Outcome
type | | A Multi-Center, 12-Week, Randomized, Double-Blind, Placebo-Controlled Study to Evaluate Safety and Tolerability of the Neutrophil Elastase Inhibitor PHP-303 in Adults with Alpha-1 Antitrypsin Deficiency (AATD) | - | European Union
Clinical Trials
Register | 2019 | - | - | - | Excluded | Exposure
type | | Case of e-cigarette or vaping product use-associated lung injury (EVALI) in London, UK | Evans, R.E., Herbert, S.,
Owen, W. and Rao, D. | BMJ Case Reports | 2021 | 14 | 4 | e240700 | Excluded | Study design | | E-cigarette environmental and fire/
life safety risks in schools reported
by secondary school teachers | Fakeh Campbell, M.L.,
Sansone, A., Gonzalez, L.N.,
Schroth, K.R. and
Shendell, D.G. | BMC Public Health | 2020 | 20 | 1 | - | Excluded | Outcome
type | | Are electronic cigarettes and vaping effective tools for smoking cessation? Limited evidence on surgical outcomes: A narrative review | Famiglietti, A., Memoli, J.W. and Khaitan, P.G. | Journal of
Thoracic Disease | 2021 | 13 | 1 | 384-395 | Excluded | Outcome
type | Table 4 continued | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |---|---|---|-------------------|--------|-------|---------|------------------------|-----------------------------------| | Competitions for smoking cessation | Fanshawe, T.R.,
Hartmann-Boyce, J.,
Perera, R. and Lindson, N. | Cochrane
Database of
Systematic
Reviews | 2019 | - | 2 | - | Excluded | Outcome
type | | Initiating pharmacologic treatment in
tobacco-dependent adults an official
American thoracic society clinical
practice guideline | Farber, H. J., Leone, F. T., Cruz-Lopes, L., Eaki, N. M. N., Evins, A. E., Evers-Casey, S., Fathi, J., Fennig, K., Folan, P., Fulone, I., Galiatsatos, P., Gogineni, H., Kantrow, S., Kathuria, H., Lamphere, T., Murray, R.L., Neptune, E., O'Brien K, K., Pacheco, M.C., Pakhale, S., Pavalagantharajah, S., Prezant, D., Ross, S., Sachs, D. P. L., Toll, B., Upson, D., Xiao, D., Zhang, Y. and Zhu, M. | American Journal
of Respiratory
and Critical
Care Medicine | 15 | 202 | 2 | E5-E31 | Excluded | Outcome
type | | Harms of Electronic Cigarettes:
What the Healthcare Provider
Needs to Know | Farber, H.J., Pacheco G.,
Manuel C., Galiatsatos, P.,
Folan, P., Lamphere, T.,
Pakhale, S. and Conrado
Pacheco G.M. | Annals of the
American
Thoracic Society | 2021 | 18 | 4 | 567-572 | Excluded | Study design | | Health effects of cigarettes, electronic cigarettes and waterpipes | Farkas, Á., Tomisa, G., Kis, E. and Horváth, A. | Orvosi Hetilap | 2021 | 162 | 3 | 83-90 | Excluded | Duplicate;
foreign
language | | Histologic patterns of lung injury in patients using e-cigarettes | Fathima, Samreen and Zhang,
Haiying | Baylor University
Medical Center
Proceedings | 2020 | 33 | 4 | 619-620 | Excluded | Study design | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |--|---|---|-------------------|--------|-------|---------|------------------------|---------------------| | Beliefs, attitudes, and confidence
to deliver electronic cigarette
counseling among 1023 Chinese
physicians in 2018 | Feng, Y. and Wang, F. and
Abdullah, A. S. and Wang, X.
and Wang, J. and Zheng, P. | International Journal of Environmental Research and Public Health | 2019 | 16 | 17 | - | Excluded | Outcome
type | | The impact of vaping on periodontitis: A systematic review | Figueredo, C.A., Abdelhay, N., Figueredo, C.M., Catunda, R. and Gibson, M.P. | Clinical and
experimental
dental research | 2021 | 7 | 3 | 376-384 | Excluded | Outcome
type | | E-cigarettes, e-toxicity and
e-commerce: a continuing
public health emergency | Fitzgerald, Dominic A. and
Peters, Matthew | Paediatric
Respiratory
Reviews | 2020 | 36 | - | 73-74 | Excluded | Outcome
type | | Cohort study of electronic cigarette
use: Safety and effectiveness after
4 years of follow-up | Flacco, M. E., Ferrante, M.,
Fiore, M., Marzuillo, C., La
Vecchia, C., Gualano, M.R.,
Liguori, G., Fragassi, G.,
Carradori, T., Bravi, F.,
Siliquini, R., Ricciardi, W.,
Villari, P. and Manzoli, L. | European Review
for Medical and
Pharmacological
Sciences | 2019 | 23 | 1 | 402-412 | Excluded | Outcome
type | | E-cigarettes and head and neck
cancers: A systematic review of
the current literature | Flach, S. and Maniam, P. and
Manickavasagam, J. | Clinical
Otolaryngology | 2019 | 44 | 5 | 749-756 | Excluded | Outcome
type | | 79 Electronic Cigarette-Related
Injuries Presenting to Five Large
Burn Centers, 2015-2019 | Flores, C.E., Chestovich, P.J.,
Saquib, S.F., Carroll, J.T.,
Daubs, M.A.H., Foster, K.N.,
Delapena, S., Richey, K.J.,
Lallemand, M., Dennis, B.M.
and Palmieri, T.L.,
Romanowski, K.S.,
Godat, L.N., and Lee, Jeanne | Journal of Burn
Care & Research | 2021 | 42 | Supp1 | S54-S55 | Excluded | Outcome
type | | Low powered variable voltage
E-Cigarette batteries under perform
at higher power settings | Floyd, E.L., Subedi, S.,
Wagener, T.L., Johnson, D.L.
and Oni, T.M. | Inhalation
toxicology | 2020 | 32 | 3 | 110-114 | Excluded | Outcome
type | Table 4 continued | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |---|---|-----------------------------|-------------------|--------|-------|-----------|------------------------|---------------------| | Severe benzodiazepine use disorder
in a 16-year-old adolescent: A rapid
and safe inpatient taper | Fournier, C. and Jamoulle, O. and Chadi, A. and Chadi, N. | Pediatrics | 2021 | 147 | 1 | - | Excluded | Exposure
type | | Risk perception of cigarette and
e-cigarette use during pregnancy:
A qualitative postpartum perspective | Froggatt, S., Reissland, N. and Covey, J. | Midwifery | 2021 | 94 | - | - | Excluded | Outcome
type | | Acute Respiratory Failure Associated
With Vaping | Fryman, Craig and
Lou,
Becky and Weber, Andrew G.
and Steinberg, Harry N. and
Khanijo, Sameer and Iakovou,
Annamaria and Makaryus,
Mina R. | CHEST | 2020 | 157 | 3 | e63-e68 | Excluded | Study design | | Real-world vaping experiences and smoking cessation among cigarette smoking adults | Fu, R., O'Connor, S.,
Diemert, L., Pelletier, H.,
Eissenberg, T., Cohen, J.
and Schwartz, R. | Addictive
Behaviors | 2021 | 116 | - | - | Excluded | Outcome
type | | Four Cycles of Etoposide plus
Cisplatin for Patients with Good-Risk
Advanced Germ Cell Tumors. | Funt, S.A., McHugh, D.J.,
Tsai, S., Knezevic, A.,
O'Donnell, D., Patil, S.,
Silber, D., Bromberg, M.,
Carousso, M., Reuter, V.E.
and Carver, B.S., Sheinfeld, .,
Motzer, R.J., Bajorin, D.F.,
Bosl, G.J. and Feldman, D.R. | Oncologist | 2021 | 26 | 6 | 483-491 | Excluded | Exposure
type | | Evaluation of a mobile safety center's impact on pediatric home safety behaviors | Furman, Leah and
Strotmeyer, Stephen and
Vitale, Christine and Gaines,
Barbara A. | BMC Public Health | 2021 | 21 | 1 | 44440 | Excluded | Outcome
type | | Changes in Biomarkers of Exposure
on Switching From a Conventional
Cigarette to Tobacco Heating
Products: a Randomized, Controlled
Study in Healthy Japanese Subjects | Gale, N., McEwan, M.,
Eldridge, A.C., Fearon, I.M.,
Sherwood, N., Bowen, E.,
McDermott, S., Holmes, E.,
Hedge, A., Hossack, S. and
Wakenshaw, L. | Nicotine & tobacco research | 2019 | 21 | 9 | 1220-1227 | Excluded | Exposure
type | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |--|---|--------------------------------|-------------------|--------|-------|----------|------------------------|---------------------| | Electronic cigarette use among
Italian smokers: patterns, settings,
and adverse events | Gallus, S., Borroni, E., Liu, X., Carrozzi, L., Dalla P.G., Eslami Varzaneh, S., Harari, S., Inciso, G., Martucci, P., Papale, M., Pistelli, F., Polla, B., Polo, M.F., Principe, R., Pulera, N., Raschi, S., Sarzani, R., Serafini, A., Odone, A. and van den Brandt, P., and Lugo, A. | Tumori | 2020 | 106 | 3 | 229-240 | Excluded | Outcome
type | | Adverse effects of electronic cigarettes on the disease-naive oral microbiome | Ganesan, S.M., Dabdoub, S.M., Nagaraja, H.N., Scott, M.L., Pamulapati, S., Berman, M.L., Shields, P.G., Wewers, M.E. and Kumar, P.S. | Science advances | 2020 | 6 | 22 | eaaz0108 | Excluded | Outcome
type | | Electronic cigarette use among heart
failure patients: Findings from the
Population Assessment of Tobacco
and Health study | Gathright, Emily C. and Wu,
Wen-Chih and Scott-Sheldon,
Lori A. J. | Heart & Lung | 2020 | 49 | 3 | 229-232 | Excluded | Outcome
type | | Are Electronic Cigarettes an Effective Aid to Smoking Cessation or Reduction Among Vulnerable Groups? A Systematic Review of Quantitative and Qualitative Evidence | Gentry, Sarah and Forouhi,
Nita G. and Notley, Caitlin | Nicotine &
Tobacco Research | 2019 | 21 | 5 | 602-616 | Excluded | Outcome
type | Table 4 continued | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |---|---|---|-------------------|--------|-------|-----------|------------------------|---------------------| | Characteristics of Persons Who Report Using Only Nicotine-Containing Products Among Interviewed Patients with E-cigarette, or Vaping, Product Use-Associated Lung Injury - Illinois, August-December 2019 | Ghinai, Isaac and Navon, Livia and Gunn, Jayleen K. L. and Duca, Lindsey M. and Brister, Sarah and Love, Sarah and Brink, Rachel and Fajardo, Geroncio and Johnson, Jona and Saathoff-Huber, Lori and King, Brian A. and Jones, Christopher M. and Krishnasamy, Vikram P. and Layden, Jennifer E. | MMWR: Morbidity
& Mortality
Weekly Report | 2020 | 69 | 3 | 84-89 | Excluded | Outcome
type | | Chronic E-Cigarette Use Increases
Neutrophil Elastase and Matrix
Metalloprotease Levels in the Lung | Ghosh, Arunava and Coakley,
Raymond D. and Ghio,
Andrew J. and Muhlebach,
Marianne S. and Esther Jr,
Charles R. and Alexis, Neil E.
and Tarran, Robert and
Esther, Charles R., Jr. | American Journal
of Respiratory
& Critical Care
Medicine | 2019 | 200 | 11 | 1392-1401 | Excluded | Outcome
type | | Vaping implications for children and youth | Gilley, Meghan and Beno,
Suzanne | Current Opinion in
Pediatrics | 2020 | 32 | 3 | 343-348 | Excluded | Exposure
type | | Compliance of e-cigarette refill liquids with regulations on labelling, packaging and technical design characteristics in nine European member states | Girvalaki, C., Vardavas, A.,
Tzatzarakis, M.,
Kyriakos, C.N., Nikitara, K.,
Tsatsakis, A.M. and
Vardavas, C.I. | Tobacco Control:
An International
Journal | 2020 | 29 | 5 | 531-536 | Excluded | Duplicate | | Patterns of E-Cigarette Use among
Youth and Young Adults: Review
of the Impact of E-Cigarettes on
Cigarette Smoking | Glasser, A., Abudayyeh, H.,
Cantrell, J. and Niaura, R. | Nicotine and
Tobacco Research | 2019 | 21 | 10 | 1320-1330 | Excluded | Outcome
type | | Potential effects of using non-combustible tobacco and nicotine products during pregnancy: a systematic review | Glover, M. and Phillips, C.V. | Harm Reduction
Journal | 2020 | 17 | 1 | 1-12 | Excluded | Exposure
type | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |---|---|---|-------------------|--------|-------|---------|------------------------|---------------------| | How effective are electronic cigarettes for reducing respiratory and cardiovascular risk in smokers? A systematic review | Goniewicz, M. L. and
Miller, C. R. and Sutanto, E.
and Li, D. | Harm Reduction
Journal | 2020 | 17 | 1 | - | Excluded | Outcome
type | | Diagnosis and Acute Management
of E-Cigarette or Vaping Product
Use-Associated Lung Injury
in the Pediatric Population:
A Systematic Review | Gonsalves, C.L., Zhu, J.W. and Kam, A.J. | Journal of
Pediatrics | 2021 | 228 | - | 260-270 | Excluded | Outcome
type | | Electronic cigarette use and
metabolic syndrome development:
A critical review | Gorna, I. and Napierala, M.
and Florek, E. | Toxics | 2020 | 8 | 4 | 45292 | Excluded | Outcome
type | | Effectiveness of electronic cigarettes in smoking cessation: A systematic review and meta-analysis | rabovac, I., Oberndorfer, M.,
Fischer, J., Wiesinger, W.,
Haider, S. and Dorner, T.E. | Nicotine and
Tobacco Research | 2021 | 23 | 4 | 625-634 | Excluded | Outcome
type | | Analysis of toxic metals in liquid from electronic cigarettes | Gray, N. and Halstead, M.
and Gonzalez-Jimenez, N.
and Valentin-Blasini, L. and
Watson, C. and Pappas, R. S. | International
Journal of
Environmental
Research and
Public Health | 2019 | 16 | 22 | - | Excluded | Outcome
type | | Toxic Metals in Liquid and Aerosol
from Pod-Type Electronic Cigarettes | Gray, N. and Halstead, M.
and Valentin-Blasini, L. and
Watson, C. and Pappas, R. S. | Journal of analytical toxicology. | 2020 | 3 | - | - | Excluded | Outcome
type | | Impact of adding and removing warning label messages from cigarette packages on adult smokers' awareness about the health harms of smoking: findings from the ITC Canada Survey | Green, A.C., Driezen, P.,
Noar, S.M., Hammond, D.
and Fong, G.T. | Tobacco Control:
An International
Journal | 2019 | 28 | 1 | e56-e63 | Excluded | Outcome
type | | Pulmonary Health Effects
of Electronic Cigarettes:
A Scoping Review | Gugala, E. and Okoh, C. M.
and Ghosh, S. and
Moczygemba, L. R. | Health Promotion
Practice | 2021 | - | - | - | Excluded | Outcome
type | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |---|--|---|-------------------|--------|-------|---------------|------------------------|---------------------| | Area-level differences in the prices of tobacco and electronic nicotine delivery systems - A systematic review | Guindon, G.E., Fatima,
T.,
Abbat, B., Bhons, P. and
Garasia, S. | Health and Place | 2020 | 65 | - | - | Excluded | Outcome
type | | E-Cigarettes: A scientometric
assessment of global publications
output during 2001-18 | Gupta, B.M.,
Mueen Ahmed, K.K.
and Visakhi, P. | Journal of Young
Pharmacists | 2020 | 12 | 1 | 29-36 | Excluded | Outcome
type | | Electronic cigarette online marketing
by New Zealand vendors | Gurram, Niveditha and
Thomson, George and
Wilson, Nick and Hoek, Janet | New Zealand
Medical Journal | 2019 | 132 | 1505 | 20-33 | Excluded | Outcome
type | | Effects of combined thc and heroin vapor inhalation in rats | Gutierrez, Arnold and
Nguyen, Jacques D. and
Creehan, Kevin M. and
Javadi-Paydar, Mehrak and
Grant, Yanabel and Taffe,
Michael A. | Psychopharmacology | 2021 | - | - | 1-15 | Excluded | Exposure
type | | Orthodox and Unorthodox Uses of
Electronic Cigarettes: A Surveillance
of YouTube Video Content | Guy, Mignonne C. and Helt,
Jacob and Palafox, Sherilyn
and Green, Kellie and Soule,
Eric K. and Maloney, Sarah F.
and Eissenberg, Thomas and
Fagan, Pebbles | Nicotine &
Tobacco Research | 2019 | 21 | 10 | 1378-1384 | Excluded | Outcome
type | | Prevalence and perceptions of
e-cigarette use among medical
students in a Saudi University | Habib, E., Helaly, M.,
Elshaer, A., Sriwi, D.,
Ahmad, M.S., Mohamed, M.I.
and Obeidat, A. | Journal of Family
Medicine &
Primary Care | 2020 | 9 | 6 | 3070-
3075 | Excluded | Outcome
type | | The GRAS provision - The FEMA
GRAS program and the safety
and regulation of flavors in the
United States | Hallagan, J.B., Hall, R.L.
and Drake, J. | Food and
Chemical
Toxicology | 2020 | 138 | - | 111236 | Excluded | Outcome
type | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |---|---|---|-------------------|--------|-------|-----------|------------------------|---------------------| | Analysis of Toxic Metals in Electronic
Cigarette Aerosols Using a Novel
Trap Design | Halstead, M., Gray, N.,
Gonzalez-Jimenez, N.,
Fresquez, M.,
Valentin-Blasini, L.,
Watson, C. and Pappas, R.S. | Journal of
Analytical
Toxicology | 2020 | 44 | 2 | 149-155 | Excluded | Duplicate | | The truth about vaping | Hamzelou, Jessica | New Scientist | 2019 | 244 | 3258 | 20-20 | Excluded | Study design | | A qualitative study of e-cigarette use among young people in Ireland: Incentives, disincentives, and putative cessation | Hanafin, Joan and Clancy,
Luke | PLoS ONE | 2020 | 15 | 12 | - | Excluded | Outcome
type | | Differential effects of tobacco cigarettes and electronic cigarettes on endothelial function in healthy young people | Haptonstall, K.P.,
Choroomi, Y., Moheimani, R.,
Nguyen, K., Tran, E.,
Lakhani, K., Ruedisueli, I.,
Gornbein, J. and
Middlekauff, H.R. | American journal of physiology - heart and circulatory physiology | 2020 | 319 | 3 | H547-H556 | Excluded | Outcome
type | | Electronic Cigarettes and
Fecundability: Results From
a Prospective Preconception
Cohort Study | Harlow, Alyssa F. and Hatch,
Elizabeth E. and Wesselink,
Amelia K. and Rothman,
Kenneth J. and Wise,
Lauren A. | American Journal of Epidemiology | 2021 | 190 | 3 | 353-361 | Excluded | Outcome
type | | Anesthesia Implications of Patient
Use of Electronic Cigarettes | Harris, D. E. and Foley, E. M. | AANA journal | 2020 | 88 | 2 | 135-140 | Excluded | Outcome
type | | Electronic cigarettes for smoking cessation | Hartmann-Boyce, J. and McRobbie, H. and Lindson, N. and Bullen, C. and Begh, R. and Theodoulou, A. and Notley, C. and Rigotti, N. A. and Turner, T. and Butler, A. R. and Fanshawe, T. R. and Hajek, P. | Cochrane
Database of
Systematic
Reviews | 2020 | 2021 | 2 | - | Excluded | Duplicate | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |--|--|--|-------------------|--------|-------|-----------|------------------------|---------------------| | Understanding decisions to use e-cigarettes or behavioural support to quit tobacco: a qualitative study of current and ex-smokers and stop smoking service staff | Hartwell, Greg and Egan,
Matt and Petticrew, Mark | Addiction | 2020 | 115 | 3 | 518-526 | Excluded | Outcome
type | | Characterization of Nicotine Salts in
23 Electronic Cigarette Refill Liquids | Harvanko, Arit M. and Havel,
Christopher M. and Jacob,
Peyton and Benowitz, Neal L. | Nicotine &
Tobacco Research | 2020 | 22 | 7 | 1239-1243 | Excluded | Exposure
type | | Electronic cigarettes cause alteration in cardiac structure and function in diet-induced obese mice | Hasan, K. M. and Friedman, T. C. and Parveen, M. and Espinoza-Derout, J. and Bautista, F. and Razipour, M. M. and Shao, X. M. and Jordan, M. C. and Roos, K. P. and Mahata, S. K. and Sinha-Hikim, A. P. | PLoS ONE | 2020 | 15 | 10 | - | Excluded | Outcome
type | | E-cigarettes and Western Diet:
Important Metabolic Risk Factors
for Hepatic Diseases | Hasan, K.M., Friedman, T.C.,
Shao, X., Parveen, M.,
Sims, C., Lee, D.L.,
Espinoza-Derout, J.,
Sinha-Hikim, I. and
Sinha-Hikim, A.P. | Hepatology | 2019 | 69 | 6 | 2442-2454 | Excluded | Outcome
type | | Adverse effects of fetal exposure of electronic-cigarettes and high-fat diet on male neonatal hearts | Hasan, K.M., Munoz, A.,
Tumoyan, H., Parveen, M.,
Espinoza-Derout, J.,
Shao, X.M., Mahata, S.K.,
Friedman, T.C. and
Sinha-Hikim, A.P. | Experimental
and Molecular
Pathology | 2021 | 118 | - | - | Excluded | Outcome
type | Table 4 continued | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |--|--|-------------------------------------|-------------------|--------|-------|-----------|------------------------|---------------------| | A Randomized Clinical Trial
Examining the Effects of Instructions
for Electronic Cigarette Use on
Smoking-Related Behaviors and
Biomarkers of Exposure | Hatsukami, D.K., Meier, E.,
Lindgren, B.R., Anderson, A.,
Reisinger, S.A., Norton, K.J.,
Strayer, L., Jensen, J.A.,
Dick, L., Murphy, S.E. and
Carmella, S.G. | Nicotine & tobacco research | 2020 | 22 | 9 | 1524-1532 | Excluded | Outcome
type | | Vaping: UK experts defend safety in face of US lung injury cases | Hawkes, N. | BMJ (Clinical research ed.) | 2019 | 367 | - | - | Excluded | Study design | | Reduction in Exposure to Selected
Harmful and Potentially Harmful
Constituents Approaching Those
Observed Upon Smoking Abstinence
in Smokers Switching to the Menthol
Tobacco Heating System 2.2 for
3 Months (Part 1) | Haziza, C., de La
Bourdonnaye, G., Donelli, A.,
Poux, V., Skiada, D.,
Weitkunat, R., Baker, G.,
Picavet, P. and Lüdicke, F. | Nicotine & tobacco research | 2020 | 22 | 4 | 539-548 | Excluded | Exposure
type | | Favorable Changes in Biomarkers of Potential Harm to Reduce the Adverse Health Effects of Smoking in Smokers Switching to the Menthol Tobacco Heating System 2.2 for 3 Months (Part 2) | Haziza, C., de La
Bourdonnaye, G., Donelli, A.,
Skiada, D., Poux, V.,
Weitkunat, R., Baker, G.,
Picavet, P. and Lüdicke, F. | Nicotine & tobacco research | 2020 | 22 | 4 | 549-559 | Excluded | Exposure
type | | Mapping public concerns of electronic cigarettes in China | He, G., Lin, X., Ju, G. and
Chen, Y. | Journal of
Psychoactive
Drugs | 2020 | 52 | 1 | 13-19 | Excluded | Outcome
type | | A Randomized Controlled Trial
Evaluating the Efficacy of E-Cigarette
Use for Smoking Cessation in the
General Population: E3 Trial Design | Hebert-Losier, A. and
Filion, K. B. and Windle, S. B.
and Eisenberg, M. J. | CJC open | 2020 | 2 | 3 | 168-175 | Excluded | Outcome
type | | Effects of Electronic Nicotine Delivery Systems and Cigarettes on Systemic Circulation and Blood-Brain Barrier: Implications for Cognitive Decline | Heldt, N.A., Reichenbach, N.,
McGary, H.M. and
Persidsky, Y. | American Journal
of Pathology | 2020 | 191 | 2 | 243-255 | Excluded | Outcome
type | Table 4 continued | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |---
---|--|-------------------|--------|-------|-----------|------------------------|---------------------| | Financial Conflicts of Interest and
Stance on Tobacco Harm Reduction:
A Systematic Review | Hendlin, Yogi H. and Vora,
Manali and Elias, Jesse and
Ling, Pamela M. | American Journal
of Public Health | 2019 | 109 | 7 | e1-e8 | Excluded | Outcome
type | | Effectiveness of an Opt-Out
Electronic Heath Record-Based
Tobacco Treatment Consult Service
at an Urban Safety Net Hospital | Herbst, N., Wiener, R.S.,
Helm, E.D., O'Donnell, C.,
Fitzgerald, C., Wong, C.,
Bulekova, K., Waite, M.,
Mishuris, R.G. and Kathuria, H. | CHEST | 2020 | 158 | 4 | 1734-1741 | Excluded | Outcome
type | | E-cigarettes: toxicological fiasco or
better than not giving up smoking? | Hering, T. | Der Internist | 2020 | 61 | 6 | 634-643 | Excluded | Duplicate | | Tobacco and bone fractures:
A review of the facts and issues
that every orthopaedic surgeon
should know | Hernigou, J. and Schuind, F. | Bone and Joint
Research | 2019 | 8 | 6 | 255-265 | Excluded | Outcome
type | | Effectiveness of stop smoking interventions among adults: Protocol for an overview of systematic reviews and an updated systematic review | Hersi, M., Traversy, G., Thombs, B.D., Beck, A., Skidmore, B., Groulx, S., Lang, E., Reynolds, D.L., Wilson, B., Bernstein, S.L. and Selby, P., Johnson- Obaseki, S., Manuel, D., Pakhale, S., Presseau, J., Courage, S., Hutton, B., Shea, B.J., Welch, V., Morrow, M., Little, J. and Stevens, A. | Systematic
Reviews | 2019 | 8 | 1 | 1-21 | Excluded | Exposure
type | | A pre-post pilot study of electronic cigarettes to reduce smoking in people with severe mental illness | Hickling, L.M., Perez-Iglesias,
R., McNeill, A., Dawkins, L.,
Moxham, J., Ruffell, T., Sendt,
K.V. and McGuire, P. | Psychological
Medicine | 2019 | 49 | 3 | 1033-1040 | Excluded | Outcome
type | | Psychological interventions for co-occurring depression and substance use disorders | Hides, L., Quinn, C.,
Stoyanov, S., Kavanagh, D.
and Baker, A. | Cochrane
Database of
Systematic
Reviews | 2019 | - | 11 | - | Excluded | Outcome
type | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |---|--|--|-------------------|--------|-------|---------|------------------------|---------------------| | An Electronic Aerosol Delivery
System for Functional Magnetic
Resonance Imaging | Hobkirk, A.L., Bitzer, Z.,
Goel, R., Sica, C.T.,
Livelsberger, C., Yingst, J.,
Houser, K.R., Rupprecht, S.,
Trushin, N., Karunanayaka, P.,
Foulds, J., Richie, J.P.,
Spreen, L., Hoglen, B.,
Wang, J., Elias, R.J.,
Yang, Q.X. | Substance Abuse:
Research &
Treatment | 2020 | 14 | - | - | Excluded | Exposure
type | | Interventions to increase adherence to medications for tobacco dependence | Holl and s, G. J. and
Naughton, F. and Farley, A.
and Lindson, N. and
Aveyard, P. | Cochrane
Database of
Systematic
Reviews | 2019 | - | 8 | - | Excluded | Outcome
type | | Interventions for tobacco cessation delivered by dental professionals | Holliday, R. and Hong, B.
and McColl, E. and
Livingstone-Banks, J.
and Preshaw, P. M. | Cochrane
Database of
Systematic
Reviews | 2021 | - | 2 | - | Excluded | Outcome
type | | Effect of nicotine on human gingival, periodontal ligament and oral epithelial cells. A systematic review of the literature | Holliday, R.S., Campbell, J.
and Preshaw, P.M. | Journal of
Dentistry | 2019 | 86 | - | 81-88 | Excluded | Exposure
type | | Repeated nicotine vapor inhalation induces behavioral sensitization in male and female C57BL/6 mice | Honeycutt, S.C., Garrett, P.I.,
Barraza, A.G., Maloy, A.N.
and Hillhouse, T.M. | Behavioural
Pharmacology | 2020 | 31 | 6 | 583-590 | Excluded | Exposure
type | | An Emerging Crisis:
Vaping-Associated Pulmonary Injury | Hooper Ii, R and ol W. and
Garfield, Jamie L. and
Hooper, R and ol W., 2nd | Annals of Internal
Medicine | 2020 | 172 | 1 | 57-58 | Excluded | Outcome
type | | The Vaping Epidemic: A Respiratory
Therapy Department's Experience
with Providing Education on Vaping | Hopper, Linda | AARC Times | 2020 | 44 | 3 | - | Excluded | Study design | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |---|--|--|-------------------|--------|-------|---------|------------------------|---------------------| | Antidepressants for smoking cessation | Howes, S. and
Hartmann-Boyce, J. and
Livingstone-Banks, J. and
Hong, B. and Lindson, N. | Cochrane
Database of
Systematic
Reviews | 2020 | - | 4 | - | Excluded | Outcome
type | | Effects of aerosolized glycerol on human lung epithelial cells by air-liquid interface cloud exposure. | Hu, Y. and Feng, H. M. and
Sheng, Y. H. and Yao, J. H.
and Guan, Y. and Tang, L. M. | Chinese
Pharmacological
Bulletin | 2020 | - | - | 640-645 | Excluded | Foreign
language | | Withdrawal Symptoms from
E-Cigarette Abstinence among
Former Smokers: A Pre-Post
Clinical Trial | Hughes, J.R., Peters, E.N., Callas, P.W., Peasley-Miklus, C., Oga, E., Etter, J.F. and Morley, N. | Nicotine and
Tobacco Research | 2020 | 22 | 5 | 734-739 | Excluded | Outcome
type | | Healthcare Professionals' Beliefs,
Attitudes, Knowledge, and Behavior
Around Vaping in Pregnancy and
Postpartum: A Qualitative Study | Hunter, Abby and Yargawa,
Judith and Notley, Caitlin and
Ussher, Michael and Bobak,
Alex and Murray, Rachael L.
and Nath, Srabani and
Cooper, Sue | Nicotine &
Tobacco Research | 2021 | 23 | 3 | 471-478 | Excluded | Outcome
type | | Single-dose intravesical chemotherapy after nephroureterectomy for upper tract urothelial carcinoma | Hwang, E. C. and
Sathianathen, N. J. and
Jung, J. H. and Kim, M. H.
and Dahm, P. and Risk, M. C. | Cochrane
Database of
Systematic
Reviews | 2019 | - | 5 | - | Excluded | Outcome
type | | Efficacy of Electronic Cigarettes for
Smoking Cessation: A Systematic
Review and Meta-Analysis | Ibrahim, S., Habiballah, M.
and Sayed, I.E. | American
journal of health
promotion: AJHP | 2021 | 35 | 3 | 442-455 | Excluded | Exposure
type | | Identification of volatile constituents
released from IQOS heat-not-burn
tobacco HeatSticks using a direct
sampling method | llies, B. D. and Moosakutty, S. and Kharbatia, N. and Sarathy, M. | Tobacco control. | 2020 | 26 | - | - | Excluded | Exposure
type | Table 4 continued | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |---|---|---|-------------------|--------|-------|-----------------|------------------------|---------------------| | Tobacco and electronic cigarettes
adversely impact ECG indexes
of ventricular repolarization:
Implication for sudden death risk | Ip, M., Diamantakos, E.,
Haptonstall, K., Choroomi, Y.,
Moheimani, R.S.,
Nguyen, K.H., Tran, E.,
Gornbein, J. and
Middlekauff, H.R. | American Journal
of Physiology
- Heart and
Circulatory
Physiology | 2020 | 318 | 5 | H1176-
H1184 | Excluded | Outcome
type | | The assessment efficacy of electrical brain stimulation among patients with drug-resistant epilepsy | Rezakhani, S. | Iranian Registery
of Clinical Trials | 2020 | - | - | - | Excluded | Outcome
type | | A Case-Based Review of
Vaping-Induced Injury-Pulmonary
Toxicity and Beyond | Isakov, Kimberly M. M. and
Legasto, Alan C. and Hossain,
Rydhwana and Verzosa
Weisman, Stacey and Toy,
Dennis and Groner, Lauren K.
and Feibusch, Am and a and
Escalon, Joanna G. | Current Problems
in Diagnostic
Radiology | 2021 | 50 | 3 | 401-409 | Excluded | Study design | | Does viewing false messages about
e-cigarette harms on Twitter change
current smokers' perceptions of
e-cigarettes in the US and the UK?
A randomised controlled experiment | Wright, C | ISRCTN registry | 2020 | - | - | - | Excluded | Outcome
type | | Do e-cigarettes help smokers quit
when not accompanied by intensive
behavioural support? | Meyers-Smith, K | ISRCTN registry | 2020 | - | - | - | Excluded | Outcome
type | | Study of first dosing of a
new
compound DNDi-6148 in healthy
volunteers to assess safety and
drug levels in blood and urine after
escalating single dose | Delhomme, S | ISRCTN registry | 2020 | - | - | - | Excluded | Exposure
type | | Mainstream smoke constituents
and in vitro toxicity comparative
analysis of 3R4F and 1R6F
reference cigarettes | Jaccard, G. and Djoko, D. T.
and Korneliou, A. and
Stabbert, R. and Belushkin, M.
and Esposito, M. | Toxicology
Reports | 2019 | 6 | - | 222-231 | Excluded | Outcome
type | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |---|--|---|-------------------|--------|-------|-----------|------------------------|---------------------| | Initiating Pharmacologic Treatment in Tobacco-Dependent Adults | Jain, A. and Davis, A. M. | JAMA - Journal
of the American
Medical
Association | 19 | 325 | 3 | 301-302 | Excluded | Exposure
type | | Early life exposure to nicotine: Postnatal metabolic, neurobehavioral and respiratory outcomes and the development of childhood cancers | Jamshed, L., Perono, G.A.,
Jamshed, S. and
Holloway, A.C. | Toxicological
Sciences | 2020 | 178 | 1 | 3-15 | Excluded | Outcome
type | | Phosphodiesterase 4 inhibitors for chronic obstructive pulmonary disease | Janjua, S., Fortescue, R. and Poole, P. | Cochrane
Database of
Systematic
Reviews | 2020 | - | 5 | - | Excluded | Outcome
type | | Smoking as a risk factor of onset
and relapse of Multiple Sclerosis -
a review | Jasielski, P. and Piedel, F. and
Rocka, A. and Petit, V. and
Rejdak, K. | Neurologia i
Neurochirurgia
Polska | 2020 | 54 | 3 | 243-251 | Excluded | Exposure
type | | Five-Day Changes in Biomarkers of
Exposure Among Adult Smokers
After Completely Switching
From Combustible Cigarettes
to a Nicotine-Salt Pod System | Jay, J. and Pfaunmiller, E. L.
and Huang, N. J. and
Cohen, G. and Graff, D. W. | Nicotine & tobacco research | 2020 | 22 | 8 | 1285-1293 | Excluded | Exposure
type | | E-Cigarettes and Similar Devices | Jenssen, Brian P. and Walley,
Susan C. | Pediatrics | 2019 | 143 | 2 | - | Excluded | Outcome
type | | Investigation of the association between smoking behavior and metabolic syndrome using lipid accumulation product index among south korean adults | Jeong, S. H. and Jang, B. N. and Kim, S. H. and Jang, S. I. and Park, E. C. | International Journal of Environmental Research and Public Health | 2021 | 18 | 8 | - | Excluded | Outcome
type | | Association between Smoking
Behavior and Insulin Resistance
Using Triglyceride-Glucose Index
among South Korean adults | Jeong, S. H. and Joo, H. J.
and Kwon, J. and Park, E. C. | The Journal of clinical endocrinology and metabolism. | 2021 | 23 | - | - | Excluded | Outcome
type | Table 4 continued | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |--|--|---|-------------------|--------|-------|---------|------------------------|---------------------| | Associations of electronic and conventional cigarette use with periodontal disease in South Korean adults | Jeong, W., Choi, D.W.,
Kim, Y.K., Lee, H.J., Lee, S.A.,
Park, E.C. and Jang, S.I | Journal of
Periodontology | 2020 | 91 | 1 | 55-64 | Excluded | Outcome
type | | The hazards of smoking and the benefits of cessation: A critical summation of the epidemiological evidence in high-income countries | Jha, P. | eLife | 2020 | 9 | - | - | Excluded | Outcome
type | | Nicotine induces cardiac toxicity
through blocking mitophagic
clearance in young adult rat | Jia, G., Meng, Z., Liu, C., Ma, X., Gao, J., Liu, J., Guo, R., Yan, Z., Christopher, T., Lopez, B., Liu, W., Dai, H., Lau, W.B., Jiao, X., Zhao, J., Wang, Z.X., Cao, J. and Wang, Y. | Life Sciences | 2020 | 257 | - | - | Excluded | Exposure
type | | Magnetic seizure therapy for treatment-resistant depression. | Jiang, J. and Zhang, C.
and Li, C. and Chen, Z. and
Cao, X. and Wang, H. and
Li, W. and Wang, J. | Cochrane
Database of
Systematic
Reviews | 2021 | - | 6 | - | Excluded | Outcome
type | | Interventions for Tobacco Cessation
in Adults, Including Pregnant
Persons: Updated Evidence Report
and Systematic Review for the US
Preventive Services Task Force | Jin, Jill and Patnode, Carrie D.
and Henderson, Jillian T.
and Coppola, Erin L. and
Melnikow, Joy and Durbin,
Shauna and Thomas,
Rachel G. | JAMA: Journal
of the American
Medical
Association | 2021 | 325 | 3 | 316-316 | Excluded | Outcome
type | | A biomonitoring assessment of secondhand exposures to electronic cigarette emissions | Johnson, Jona M. and Naeher, Luke P. and Yu, Xiaozhong and Sosnoff, Connie and Wang, Lanqing and Rathbun, Stephen L. and De Jesús, Víctor R. and Xia, Baoyun and Holder, Cory and Muilenburg, Jessica L. and Wang, Jia-Sheng | International
Journal of
Hygiene &
Environmental
Health | 2019 | 222 | 5 | 816-823 | Excluded | Exposure
type | Table 4 continued | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |---|--|---|-------------------|--------|-------|---------|------------------------|--------------------------------------| | Safety of electronic cigarette use
during breastfeeding: Qualitative
study using online forum discussions | Johnston, Emily Jade and
Campbell, Katarzyna and
Coleman, Tim and Lewis,
Sarah and Orton, Sophie
and Cooper, Sue | Journal of Medical
Internet Research
Vol 21(8), 2019,
ArtID e11506 | 2019 | 21 | 8 | - | Excluded | Outcome
type | | A Study of TAK-861 in Healthy Adult | Nonomura, H | Japan Primary
Registry Network | 2021 | - | - | - | Excluded | Outcome
type;
exposure
type | | Comparative assessment of in vitro BBB tight junction integrity following exposure to cigarette smoke and e-cigarette vapor: a quantitative evaluation of the protective effects of metformin using small-molecular-weight paracellular markers | Kadry, H. and Noorani, B.
and Bickel, U. and
Abbruscato, T. J. and
Cucullo, L. | Fluids and barriers
of the CNS | 2021 | 18 | 1 | 1-15 | Excluded | Outcome
type | | E-cigarettes and Smoking Cessation in Smokers With Chronic Conditions | Kalkhoran, Sara and Chang,
Yuchiao and Rigotti, Nancy A. | American Journal of Preventive Medicine | 2019 | 57 | 6 | 786-791 | Excluded | Outcome
type | | Use of electronic cigarettes in european populations:
A narrative review | Kapan, A., Stefanac, S.,
Sandner, I., Haider, S.,
Grabovac, I. and Dorner, T. E. | International
Journal of
Environmental
Research and
Public Health | 2020 | 17 | 6 | - | Excluded | Outcome
type | | Use of Electronic Vapor Products
Before, During, and After Pregnancy
Among Women with a Recent Live
Birth - Oklahoma and Texas, 2015 | Kapaya, M., D'Angelo, D.V.,
Tong, V.T., England, L.,
Ruffo, N., Cox, S., Warner, L.,
Bombard, J., Guthrie, T.,
Lampkins, A. and King, B.A. | MMWR: Morbidity
& Mortality
Weekly Report | 2019 | 68 | 8 | 189-194 | Excluded | Outcome
type | | Electronic cigarette use amongst
youth: A threat to public health? | Kar, Ankita and Thakur,
Shalini and Rao, Vishal U. S. | Oral oncology | 2020 | 104 | - | - | Excluded | Outcome
type | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |---|---|--|-------------------|--------|-------|-----------|------------------------|---------------------| | Effect of Electronic Cigarettes
on the Inner Mucosa of the
Craniofacial Region | Kar, M., Emre, I.E., Muluk, N.B.
and Cingi, C. | The Journal of
Craniofacial
Surgery | 2019 | 30 | 3 | e235-e238 | Excluded | Outcome
type | | E-cigarette and vaping product use-associated lung injury in the pediatric population: A critical review of the current literature | Kaslow, J. A. and
Rosas-Salazar, C. and
Moore, P. E. | Pediatric
Pulmonology | 2021 | 56 | 7 | 1857-1867 | Excluded | Outcome
type | | Perceived barriers to quitting cigarettes among hospitalized smokers with substance use disorders: A mixed methods study | Kathuria, H., Seibert, R.G.,
Cobb,
V., Herbst, N.,
Weinstein, Z.M., Gowarty, M.,
Jhunjhunwala, R., Helm, E.D.
and Wiener, R.S. | Addictive
Behaviors | 2019 | 95 | - | 41-48 | Excluded | Outcome
type | | Beliefs about e-cigarettes: A focus
group study with college students | Katz, S.J., Erkinnen, M.,
Lindgren, B. and
Hatsukami, D. | American Journal of Health Behavior | 2019 | 43 | 1 | 76-87 | Excluded | Outcome
type | | High school youth and e-cigarettes:
The influence of modified risk
statements and flavors on
e-cigarette packaging | Katz, S.J., Shi, W.,
Erkkinen, M., Lindgren, B.
and Hatsukami, D. | American Journal
of Health Behavior | 2020 | 44 | 2 | 130-145 | Excluded | Outcome
type | | Cost-Effectiveness Analysis of
Smoking Cessation Interventions
in the United Kingdom Accounting
for Major Neuropsychiatric
Adverse Events | Keeney, E., Welton, N.J.,
Stevenson, M., Dalili, M.N.,
López-López, J.A.,
Caldwell, D.M., Phillippo, D.M.,
Munafò, M.R. and
Thomas, K.H. | Value in Health | 2021 | 24 | 6 | 780-788 | Excluded | Outcome
type | | Comparison of Achilles Tendon
Healing After Exposure to
Combusted Tobacco, Vaping,
and Control in a Rat Model | Kennedy, Patrick and Saloky,
Kaitlin and Yadavalli, Aditya
and Barlow, Erin and Aynardi,
Michael and Garner, Matthew
and Bible, Jesse and Lewis,
Greg and Dhawan, Aman | Orthopaedic
Journal of Sports
Medicine | 2019 | 7 | - | - | Excluded | Outcome
type | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |--|--|---|-------------------|--------|-------|-----------|------------------------|---------------------| | Everything you wanted to know
about e-cigarettes and vaping
but were afraid to ask: A guide
for mental health clinicians | Ker, S., Peckham, E.,
Gilbody, S. and Bonner, S. | BJPsych
Advances | 2019 | 25 | 5 | 279-286 | Excluded | Outcome
type | | Smoking e-cigarettes an increasing
trend among young saudi generation:
A questionnaire survey | Khalid, A. S. A. and
Alzahrani, M. and
Alharbi, W. A. and Shabbir, A. | Pakistan Journal
of Medical and
Health Sciences | 2021 | 15 | 4 | 799-802 | Excluded | Outcome
type | | Adjunctive systemic antimicrobials for the non-surgical treatment of periodontitis | Khattri, S., Nagraj, S.K.,
Arora, A., Eachempati, P.,
Kusum, C.K., Bhat, K.G.,
Johnson, T.M. and Lodi, G. | Cochrane
Database of
Systematic
Reviews | 2020 | - | 11 | - | Excluded | Exposure
type | | Is e-cigarette use in non-smoking
young adults associated with later
smoking? A systematic review and
meta-analysis | Khouja, J. N. and
Suddell, S. F. and Peters, S. E.
and Taylor, A. E. and
Munafo, M. R. | Tobacco control. | 2020 | 10 | - | - | Excluded | Outcome
type | | Proton pump inhibitors for chronic obstructive pulmonary disease | Kikuchi, S. and Imai, H. and
Tani, Y. and Tajiri, T. and
Watanabe, N. | Cochrane
Database of
Systematic
Reviews | 2020 | - | 8 | - | Excluded | Outcome
type | | A Toxic Blend: Assessing the Effects
of Cross-Source Media Coverage of
Flavored E-Cigarettes on Youth and
Young Adult Perceptions | Kikut, Ava and Williams,
Sharon and Hornik, Robert | Journal of Health
Communication | 2020 | 25 | 8 | 640-649 | Excluded | Outcome
type | | 261. Transforming Influence to
Wellness: identifying Adolescents'
Affect and Preferences During the
Preliminary Design of a Social Board
Game for Tobacco Prevention | Kim, J. and Khalil, G. E. and
Moor, A. | Journal of adolescent health | 2020 | 66 | 2 | S132-S133 | Excluded | Outcome
type | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |---|---|---|-------------------|--------|-------|---------|------------------------|--------------------------------------| | Changes in Multiple and Different
Tobacco Product Use Behaviors
in Women Before and During
Pregnancy: An Analysis of
Longitudinal Population Assessment
of Tobacco and Health Data | Kim, Sooyong | American Journal
of Preventive
Medicine | 2020 | 59 | 4 | 588-592 | Excluded | Outcome
type | | Electronic cigarettes may not be a
"safer alternative" of conventional
cigarettes during pregnancy:
evidence from the nationally
representative PRAMS data | Kim, Sooyong and Oancea, S
and a Cristina | BMC Pregnancy & Childbirth | 2020 | 20 | 1 | - | Excluded | Outcome
type | | Flexibility exercise training for adults with fibromyalgia | Kim, S.Y., Busch, A.J.,
Overend, T.J., Schachter, C.L.,
van der Spuy, I., Boden, C.,
Góes, S.M., Foulds, H.J. and
Bidonde, J. | Cochrane
Database of
Systematic
Reviews | 2019 | - | 9 | - | Excluded | Outcome
type;
exposure
type | | Motivations for using electronic
cigarettes in young adults:
A systematic review | Kinouani, S. and Leflot, C.
and V and erkam, P. and
Auriacombe, M. and
Langlois, E. and Tzourio, C. | Substance abuse | 2020 | 41 | 3 | 315-322 | Excluded | Outcome
type | | Young people's perspectives of e-cigarette use in the home | Kirkcaldy, Andrew and
Fairbrother, Hannah and
Weiner, Kate and Curtis,
Penny | Health & Place | 2019 | 57 | - | 157-164 | Excluded | Outcome
type | | e-Cigarettes for smoking cessation:
do they deliver? | Kitzen, J. M. and
McConaha, J. L. and
Bookser, M. L. and
Pergolizzi, J. V. and Taylor, R.
and Raffa, R. B. | Journal of clinical
pharmacy and
therapeutics | 2019 | 44 | 4 | 650-655 | Excluded | Duplicate | | Electronic Cigarettes:
Common Questions and Answers | Klein, Michael D. and Sokol,
Natasha A. and Stroud,
Laura R. | American Family
Physician | 2019 | 100 | 4 | 227-235 | Excluded | Outcome
type | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |--|--|--|-------------------|--------|-------|-----------|------------------------|---------------------| | Radiologic, pathologic, clinical,
and physiologic findings of
electronic cigarette or vaping
product use-associated lung injury
(EVALI): Evolving knowledge and
remaining questions | Kligerman, S. and
Raptis, C. and Larsen, B.
and Henry, T. S. and
Caporale, A. and Tazelaar, H.
and Schiebler, M. L. and
Wehrli, F. W. and Klein, J. S.
and Kanne, J. | Radiology | 2020 | 294 | 2 | 491-505 | Excluded | Exposure
type | | E-cigarettes and the clinical
encounter: Physician perspectives
on e-cigarette safety, effectiveness,
and patient educational needs | Kollath-Cattano, C.,
Dorman, T., Albano Jr, A.W.,
Jindal, M., Strayer, S.M. and
Thrasher, J.F. | Journal of
Evaluation in
Clinical Practice | 2019 | 25 | 5 | 761-768 | Excluded | Duplicate | | Effects of Tobacco Smoking on Cardiovascular Disease | Kondo, T. and Nakano, Y. and
Adachi, S. and Murohara, T. | Circulation
Journal | 2019 | 83 | 10 | 1980-1985 | Excluded | Exposure
type | | Early and late adverse renal effects
after potentially nephrotoxic
treatment for childhood cancer | Kooijmans, E.C.,
Bökenkamp, A.,
Tjahjadi, N.S., Tettero, J.M.,
van Dulmen-den Broeder, E.,
van der Pal, H.J. and
Veening, M.A | Cochrane
Database of
Systematic
Reviews | 2019 | - | 3 | - | Excluded | Outcome
type | | Vaping Associated Pulmonary
Injury (VAPI) with superimposed
Mycoplasma pneumoniae infection | Kooragayalu, S. and
El-Zarif, S. and Jariwala, S. | Respiratory
Medicine Case
Reports | 2020 | 29 | - | - | Excluded | Study design | | Health consequences of smoking-focusing on alternative smoking methods | Kopa, P.N. and Pawliczak, R. | Alergologia Polska
- Polish Journal of
Allergology | 2019 | 6 | 3 | 100-109 | Excluded | Outcome
type | | IQOS - a heat-not-burn (HnB)
tobacco product - chemical
composition and possible impact on
oxidative stress and inflammatory
response. A systematic review | Kopa, P.N. and Pawliczak, R. | Toxicology
Mechanisms
& Methods | 2020 | 30 | 2 | 81-87 | Excluded | Exposure
type | | Pharmacotherapy for smoking cessation in schizophrenia: a systematic review | Kozak, K. and George, T. P. | Expert Opinion on
Pharmacotherapy | 2020 | 21 | 5 | 581-590 | Excluded | Outcome
type | Table 4 continued | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |--
--|---|-------------------|--------|-------|-----------|------------------------|---------------------| | Interventions for Tobacco
Smoking Cessation in Adults,
Including Pregnant Persons:
US Preventive Services Task Force
Recommendation Statement | Krist, Alex H. and Davidson, Karina W. and Mangione, Carol M. and Barry, Michael J. and Cabana, Michael and Caughey, Aaron B. and Donahue, Katrina and Doubeni, Chyke A. and Epling, John W., Jr. and Kubik, Martha and Ogedegbe, Gbenga and Pbert, Lori and Silverstein, Michael and Simon, Melissa A. and Tseng, Chien-Wen and Wong, John B. | JAMA: Journal
of the American
Medical
Association | 2021 | 325 | 3 | 265-279 | Excluded | Outcome
type | | An E-Liquid Flavor Wheel: A Shared
Vocabulary Based on Systematically
Reviewing E-Liquid Flavor
Classifications in Literature | Krüsemann, E.J.,
Boesveldt, S., De Graaf, K.
and Talhout, R. | Nicotine and
Tobacco Research | 2019 | 21 | 10 | 1310-1319 | Excluded | Outcome
type | | A numerical investigation of the potential effects of e-cigarette smoking on local tissue dosimetry and the deterioration of indoor air quality | Kuga, K., Ito, K., Chen, W.,
Wang, P. and Kumagai, K. | Indoor air | 2020 | 30 | 5 | 1018-1038 | Excluded | Exposure
type | | Perceptions and Sentiments About
Electronic Cigarettes on Social Media
Platforms: Systematic Review | Kwon, M. and Park, E. | JMIR Public Health
and Surveillance | 2020 | 6 | 1 | e13673 | Excluded | Outcome
type | | Non-Pharmacological and
Pharmacological Interventions
for Smoking Cessation Programs
in Youth: A Review of Clinical
Effectiveness and Guidelines | Lachance, C. and Frey, N. | Canadian Agency
for Drugs and
Technologies
in Health | 2020 | - | - | - | Excluded | Outcome
type | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |--|--|---|-------------------|--------|-------|-------------|------------------------|---------------------| | Assessing the appeal of Instagram electronic cigarette refill liquid promotions and warnings among young adults: Mixed methods focus group study | Laestadius, Linnea I. and
Penndorf, Kendall E. and
Seidl, Melissa and Cho,
Young I. | Journal of Medical
Internet Research | 2019 | 21 | 11 | - | Excluded | Outcome
type | | 6 Holistic Fitness Foundation:
Steps to Staying Strong | Laing, Karen | Beginnings | 2020 | 40 | 3 | - | Excluded | Study design | | Cardio-oncology: where do we stand for in Belgium? | Lancellotti, P., De Pauw, M. and Claeys, M. | Acta Cardiologica | 2021 | 76 | 2 | 204-208 | Excluded | Outcome
type | | Life-threatening bronchiolitis related
to electronic cigarette use in a
Canadian youth | L and man, Simon T. and
Dhaliwal, Inderdeep and
Mackenzie, Constance A. and
Martinu, Tereza and Steele,
Andrew and Bosma, Karen J. | CMAJ: Canadian
Medical
Association
Journal | 2019 | 191 | 48 | E1321-E1331 | Excluded | Study design | | Nonanimal toxicology testing approaches for traditional and deemed tobacco products in a complex regulatory environment: Limitations, possibilities, and future directions | Lauterstein, D., Savidge, M.,
Chen, Y., Weil, R. and
Yeager, R.P. | Toxicology in Vitro | 2020 | 62 | - | - | Excluded | Outcome
type | | Walking for hypertension | Lee, L. L. and Mulvaney, C. A.
and Wong, Y. K. and
Chan, E. S. Y. and
Watson, M. C. and Lin, H. H. | Cochrane
Database of
Systematic
Reviews | 2021 | - | 2 | - | Excluded | Outcome
type | | Endotoxin and (1->3)-beta-D-glucan contamination in electronic cigarette products sold in the United States | Lee, M. S. and Allen, J. G. and
Christiani, D. C. | Environmental
Health
Perspectives | 2019 | 127 | 4 | - | Excluded | - | | Considerations related to vaping as a possible gateway into cigarette smoking: An analytical review | Lee, P. N. and Coombs, K. J. and Afolalu, E. F. | F1000Research | 2019 | 7 | - | - | Excluded | Outcome
type | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |--|---|--|-------------------|--------|-------|---------|------------------------|---------------------| | Effect of Electronic Cigarettes on
Smoking Reduction and Cessation in
Korean Male Smokers: a Randomized
Controlled Study | Lee, S. H. and Ahn, S. H. and
Cheong, Y. S. | Journal of the
American Board
of Family Medicine | 2019 | 32 | 4 | 567-574 | Excluded | Outcome
type | | Youth and Young Adult Use
of Pod-Based Electronic
Cigarettes From 2015 to 2019:
A Systematic Review | Lee, Stella Juhyun and Rees,
Vaughan W. and Yossefy,
Noam and Emmons, Karen M.
and Tan, Andy S. L. | JAMA Pediatrics | 2020 | 174 | 7 | 714-720 | Excluded | Outcome
type | | Route of administration effects on nicotine discrimination in female and male mice | Lefever, T.W., Thomas, B.F.,
Kovach, A.L., Snyder, R.W.
and Wiley, J.L. | Drug and Alcohol
Dependence | 2019 | 204 | - | - | Excluded | Exposure
type | | E-cigarette use and its
predictors: Results from an online
cross-sectional survey in Poland | Lewek, P. and Wozniak, B.
and Maludzinska, P. and
Smigielski, J. and Kardas, P. | Tobacco Induced
Diseases | 2019 | 17 | - | - | Excluded | Outcome
type | | Home smoking and vaping policies
among US adults: results from the
Population Assessment of Tobacco
and Health (PATH) study, wave 3 | Li, D., Shi, H., Xie, Z.,
Rahman, I., McIntosh, S.,
Bansal-Travers, M.,
Winickoff, J.P., Drehmer, J.E.
and Ossip, D.J | Preventive
Medicine | 2020 | 139 | - | - | Excluded | Outcome
type | | Treatment regimens for administration of anti-vascular endothelial growth factor agents for neovascular age-related macular degeneration | Li, E. and Donati, S.
and Lindsley, K. B. and
Krzystolik, M. G. and
Virgili, G. | Cochrane
Database of
Systematic
Reviews | 2020 | - | 5 | - | Excluded | Outcome
type | | Effects of Electronic Cigarettes
on Indoor Air Quality and Health | Li, Liqiao and Lin, Yan and
Xia, Tian and Zhu, Yifang | Annual Review of
Public Health | 2020 | 41 | - | 363-380 | Excluded | Exposure
type | | Limited Aggregation
and E-Cigarettes | Lim, J. E. | Nicotine and
Tobacco Research | 2021 | 23 | 1 | 21-25 | Excluded | Outcome
type | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |---|---|--|-------------------|--------|-------|-----------|------------------------|---------------------| | Smoking susceptibility among
non-smoking school-going
adolescents in Malaysia: Findings
from a national school-based survey | Lim, K. H. and Ghazali, S. M.
and Lim, H. L. and
Cheong, K. C. and Teh, C. H.
and Lim, K. K. and Heng, P. P.
and Cheah, Y. K. and
Lim, J. H. | BMJ Open | 2019 | 9 | 10 | - | Excluded | Outcome
type | | Surgical Smoke Exposure in
Operating Room Personnel: A Review | Limchantra, Ice V. and Fong,
Yuman and Melstrom, Kurt A. | JAMA Surgery | 2019 | 154 | 10 | 960-967 | Excluded | Exposure
type | | Different doses, durations and modes
of delivery of nicotine replacement
therapy for smoking cessation | Lindson, N., Chepkin, S.C.,
Ye, W., Fanshawe, T.R.,
Bullen, C. and
Hartmann-Boyce. | Cochrane
Database of
Systematic
Reviews | 2019 | - | 4 | - | Excluded | Outcome
type | | Smoking reduction interventions for smoking cessation | Lindson, N., Klemperer, E.,
Hong, B., Ordóñez-Mena, J.M.
and Aveyard, P. | Cochrane
Database of
Systematic
Reviews | 2019 | - | 9 | - | Excluded | Outcome
type | | Motivational interviewing for smoking cessation | Lindson, N. and
Thompson, T. P. and
Ferrey, A. and Lambert, J. D.
and Aveyard, P. | Cochrane
Database of
Systematic
Reviews | 2019 | - | 7 | - | Excluded | Outcome
type | | Metabolomic Analysis Identified
Reduced Levels of Xenobiotics,
Oxidative Stress, and Improved
Vitamin Metabolism in Smokers
Switched to Vuse Electronic Nicotine
Delivery System | Liu, Gang and Lin, Chi Jen
and Yates, Charles R. and
Prasad, G. L. | Nicotine &
Tobacco Research | 2021 | 23 | 7 | 1133-1142 | Excluded | Outcome
type | | Baclofen for alcohol withdrawal | Liu, J. and Wang, L. N. | Cochrane
Database of
Systematic
Reviews |
2019 | - | 11 | - | Excluded | Exposure
type | Table 4 continued | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |--|---|---|-------------------|--------|-------|---------|------------------------|--------------------------------------| | A phase II study of copper-depletion using tetrathiomolybdate (TM) in patients (pts) with high risk breast cancer (BC): role of collagen processing and tumor microenvironment | Liu, Y. L. and Bager, C. L.
and Willumsen, N.
and Kornhauser, N.
and Cobham, M. and
Andreopoulou, E. and
Cigler, T. and Moore, A. and
LaPolla, D. and Fitzpatrick, V.
and et al. | Cancer research | 2019 | 79 | 4 | - | Excluded | Outcome
type | | Electronic Nicotine Delivery
Systems or E-cigarettes: American
College of Preventive Medicine's
Practice Statement | Livingston, Catherine J. and
Freeman, R and all J. and
Costales, Victoria C. and
Westhoff, John L. and Caplan,
Lee S. and Sherin, Kevin M.
and Niebuhr, David W. | American Journal
of Preventive
Medicine | 2019 | 56 | 1 | 167-178 | Excluded | Outcome
type | | Electronic Nicotine Delivery Systems:
Current trends and patient education
opportunities for dental hygienists | Loewen, Jill M. and Relich,
Erin E. | Journal of Dental
Hygiene | 2019 | 93 | 1 | 43-51 | Excluded | Outcome
type | | Trajectories of Tobacco and
Nicotine Use Across Young
Adulthood, Texas, 2014-2017 | Loukas, Alex and ra and
Marti, C. Nathan and Perry,
Cheryl L. | American Journal
of Public Health | 2019 | 109 | 3 | 465-471 | Excluded | Outcome
type;
exposure
type | | Vaping-related Lung Injury in an Adolescent | Lu, Monica A. and Jabre,
Nicholas A. and Mogayzel Jr,
Peter J. and Mogayzel,
Peter J., Jr. | American Journal
of Respiratory
& Critical Care
Medicine | 2020 | 201 | 4 | 481-482 | Excluded | Study design | | Gun access, ownership, gun-related experiences, and substance use in young adults: a latent class analysis | Lu, Yu and Temple, Jeff R. | American
Journal of Drug
& Alcohol Abuse | 2020 | 46 | 3 | 333-339 | Excluded | Outcome
type | | Benefits of e-cigarettes in smoking
reduction and in pulmonary health
among chronic smokers undergoing
a lung cancer screening program
at 6 months | Lucchiari, C., Masiero, M.,
Mazzocco, K., Veronesi, G.,
Maisonneuve, P.,
Jemos, C., Salè, E.O.,
Spina, S., Bertolotti, R.
and Pravettoni, G. | Addictive
Behaviors | 2020 | 103 | - | - | Excluded | Outcome
type | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |---|---|--|-------------------|--------|-------|-----------|------------------------|---------------------| | Potential for non-combustible nicotine products to reduce socioeconomic inequalities in smoking: a systematic review and synthesis of best available evidence | Lucherini, M. and Hill, S. and Smith, K. | BMC Public Health | 2019 | 19 | 1 | 1-12 | Excluded | Outcome
type | | Pharmacokinetic Comparison of a
Novel Non-tobacco-Based Nicotine
Pouch (ZYN) With Conventional,
Tobacco-Based Swedish Snus and
American Moist Snuff | Lunell, E., Fagerström, K.,
Hughes, J. and Pendrill, R. | Nicotine & tobacco research | 2020 | 22 | 10 | 1757-1763 | Excluded | Duplicate | | Using social media for smoking cessation interventions: a systematic review | Luo, T., Li, M.S., Williams, D.,
Phillippi, S., Yu, Q.,
Kantrow, S., Kao, Y.H.,
Celestin, M., Lin, W.T.
and Tseng, T.S | Perspectives in
Public Health | 2021 | 141 | 1 | 50-63 | Excluded | Outcome
type | | Urinary Cyanoethyl Mercapturic Acid,
a Biomarker of the Smoke Toxicant
Acrylonitrile, Clearly Distinguishes
Smokers From Nonsmokers | Luo, Xianghua and Carmella,
Steven G. and Chen, Menglan
and Jensen, Joni A. and
Wilkens, Lynne R. and
March and , Loic Le and
Hatsukami, Dorothy K. and
Murphy, Sharon E. and Hecht,
Stephen S. and Le March and
, Loic | Nicotine &
Tobacco Research | 2020 | 22 | 10 | 1744-1747 | Excluded | Duplicate | | Electronic cigarettes and cardiovascular health: what do we know so far? | MacDonald, Andrea and
Middlekauff, Holly R. | Vascular Health &
Risk Management | 2019 | 15 | - | 159-174 | Excluded | Outcome
type | | Persistent Severe Fixed Airways
Obstruction in a High-Dosing
E-cigarette User | Macedonia, Tony V.
and Krefft, Silpa D.
and Rose, Cecile S. | JGIM: Journal of
General Internal
Medicine | 2020 | 35 | 1 | 345-349 | Excluded | Study design | Table 4 continued | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |--|---|--|-------------------|--------|-------|-----------------|------------------------|---------------------| | Cluster analysis of urinary tobacco
biomarkers among U.S. adults:
Population Assessment of Tobacco
and Health (PATH) biomarker study
(2013-2014) | Majeed, Ban and Linder,
Daniel and Eissenberg,
Thomas and Tarasenko,
Yelena and Smith,
Danielle and Ashley, David | Preventive
Medicine | 2020 | 140 | - | N.PAG-N.
PAG | Excluded | Outcome
type | | Once daily long-acting beta-agonists
and long-acting muscarinic
antagonists in a combined inhaler
versus placebo for chronic
obstructive pulmonary disease | Maqsood, U. and Ho, T. N. and
Palmer, K. and Eccles, F. J. R.
and Munavvar, M. and
Wang, R. and Crossingham, I.
and Evans, D. J. W. | Cochrane
Database of
Systematic
Reviews | 2019 | - | 3 | - | Excluded | Outcome
type | | Electronic cigarettes in the indoor environment | Marcham, Cheryl L. and
Springston, John P. | Reviews on
Environmental
Health | 2019 | 34 | 2 | 105-124 | Excluded | Exposure
type | | How bad are e-cigarettes?
What can we learn from animal
exposure models? | Marczylo, T. | Journal of
Physiology | 2020 | 598 | 22 | 5073-
5089 | Excluded | Outcome
type | | The impact of vaping on ocular health: a literature review | Martheswaran, T. and
Shmunes, M. H. and
Ronquillo, Y. C. and
Moshirfar, M. | International
Ophthalmology | 2021 | - | - | 1-8 | Excluded | Outcome
type | | Electronic Cigarette Use and
Blood Pressure Endpoints:
a Systematic Review | Martinez-Morata, I. and
Sanchez, T. R. and Shimbo, D.
and Navas-Acien, A. | Current
Hypertension
Reports | 2021 | 23 | 1 | - | Excluded | Duplicate | | E-cigarettes May Support Smokers
With High Smoking-Related Risk
Awareness to Stop Smoking in the
Short Run: Preliminary Results by
Randomized Controlled Trial | Masiero, M., Lucchiari, C.,
Mazzocco, K., Veronesi, G.,
Maisonneuve, P.,
Jemos, C., Salè, E.O.,
Spina, S., Bertolotti, R. and
Pravettoni, G. | Nicotine &
Tobacco Research | 2019 | 21 | 1 | 119-126 | Excluded | Duplicate | | Modifications to Electronic Nicotine
Delivery Systems: Content Analysis
of YouTube Videos | Massey, Z.B., Li, Y., Holli, J.,
Churchill, V., Yang, B.,
Henderson, K., Ashley, D.L.,
Huang, J. and Popova, L. | Journal of Medical
Internet Research | 2020 | 22 | 6 | - | Excluded | Outcome
type | Table 4 continued | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |--|--|---|-------------------|--------|-------|-----------|------------------------|---------------------| | The effects of varying electronic cigarette warning label design features on attention, recall, and product perceptions among young adults | Mays, D., Villanti, A.,
Niaura, R.S., Lindblom, E.N.
and Strasser, A.A. | Health
Communication | 2019 | 34 | 3 | 317-324 | Excluded | Outcome
type | | The Messages Presented in
Electronic Cigarette-Related Social
Media Promotions and Discussion:
Scoping Review | McCausland, K., Maycock, B.,
Leaver, T. and Jancey, J. | Journal of Medical
Internet Research | 2019 | 21 | 2 | - | Excluded | Outcome
type | | Exposure to and perceptions
of
health warning labels on nicotine
vaping products: Findings from
the 2016 International Tobacco
Control Four Country Smoking
and Vaping Survey | McDermott, M.S., Li, G.,
McNeill, A., Hammond, D.,
Thrasher, J.F., O'Connor, R.J.,
Cummings, K.M., Borland, R.,
Fong, G.T. and Hitchman, S.C. | Addiction | 2019 | 114 | - | 134-143 | Excluded | Outcome
type | | Electronic cigarettes: A position
statement from the Thoracic Society
of Australia and New Zealand* | McDonald, C.F., Jones, S., Beckert, L., Bonevski, B., Buchanan, T., Bozier, J., Carson-Chahhoud, K.V., Chapman, D.G., Dobler, C.C., Foster, J.M. and Hamor, P., Hodge, S., Holmes, P.W., Larcombe, A.N., Marshall, H.M., McCallum, G.B., Miller, A., Pattemore, P., Roseby, R., See, H.V., Stone, E., Thompson, B.R., Ween, M.P. and Peters, M. J. | Respirology | 2020 | 25 | 10 | 1082-1089 | Excluded | Duplicate | | Smoking in pregnancy:
pathophysiology of harm and
current evidence for monitoring
and cessation | McDonnell, Brendan P.
and Regan, Carmen | Obstetrician &
Gynaecologist | 2019 | 21 | 3 | 169-175 | Excluded | Outcome
type | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |--|--|---|-------------------|--------|-------|---------|------------------------|---------------------| | Evidence and E-Cigarettes:
Explaining English Exceptionalism | McKee, Martin | American Journal of Public Health | 2019 | 109 | 7 | 965-966 | Excluded | Outcome
type | | ES13.04 Comparing ENDS to NRT for Smoking Cessation | McRobbie, H. | Journal of thoracic oncology | 2019 | 14 | 10 | S47-S48 | Excluded | Outcome
type | | Nicotine replacement treatment,
e-cigarettes and an online
behavioural intervention to reduce
relapse in recent ex-smokers:
a multinational four-arm RCT | McRobbie, H. J. and
Phillips-Waller, A. and
El Zerbi, C. and McNeill, A.
and Hajek, P. and Pesola, F.
and Balmford, J. and
Ferguson, S. G. and Li, L.
and Lewis, S. and et al. | Health technology assessment | 2020 | 24 | 68 | 1-81 | Excluded | Outcome
type | | Vaping-Related Mobile Apps
Available in the Google Play Store
After the Apple Ban: Content Review | Meacham, Meredith C. and
Vogel, Erin A. and Thrul,
Johannes | Journal of Medical
Internet Research | 2020 | 22 | 11 | - | Excluded | Outcome
type | | Impact of non-menthol flavours in e-cigarettes on perceptions and use: an updated systematic review | Meernik, C. and Baker, H. M.
and Kowitt, S. D. and
Ranney, L. M. and
Goldstein, A. O. | BMJ Open | 2019 | 9 | 10 | - | Excluded | Outcome
type | | Retroperitoneal versus
transperitoneal approach for
elective open abdominal aortic
aneurysm repair | Mei, F. and Hu, K. and
Zhao, B. and Gao, Q. and
Chen, F. and Zhao, L. and
Wu, M. and Feng, L. and
Wang, Z. and Yang, J.
and et al. | Cochrane
Database of
Systematic
Reviews | 2021 | - | 6 | - | Excluded | Exposure
type | | Development of a self-help
smoking cessation intervention for
dual users of tobacco cigarettes
and e-cigarettes | Meltzer, L.R., Simmons, V.N.,
Piñeiro, B., Drobes, D.J.,
Quinn, G.P., Meade, C.D.,
Brandon, K.O., Palmer, A.,
Unrod, M., Harrell, P.T. and
Bullen, C., Eissenberg, T. and
Brandon, T. H. | International Journal of Environmental Research and Public Health | 2021 | 18 | 5 | - | Excluded | Outcome
type | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |--|--|---|-------------------|--------|-------|---------|------------------------|---------------------| | Should psychiatrists support the availability of nicotine e-cigarettes in Australia? | Mendelsohn, Colin Paul | Australasian
Psychiatry | 2019 | 27 | 6 | 657-658 | Excluded | Outcome
type | | Smoking cessation in 2019 | Mendes, Aysha | British Journal
of Community
Nursing | 2019 | 24 | 3 | 144-145 | Excluded | Outcome
type | | The vaping controversy: evidence remains a smoky affair | Mendes, Aysha | Journal of
Prescribing
Practice | 2019 | 1 | 8 | 374-375 | Excluded | Study design | | Barriers and Facilitators of
Adherence to Nicotine Replacement
Therapy: A Systematic Review
and Analysis Using the Capability,
Opportunity, Motivation, and
Behaviour (COM-B) Model | Mersha, A.G., Gould, G.S.,
Bovill, M. and Eftekhari, P. | International
Journal of
Environmental
Research &
Public Health | 2020 | 17 | 23 | 30 | Excluded | Outcome
type | | Cardiovascular effects of electronic cigarettes | Middlekauff, Holly R. | Nature Reviews
Cardiology | 2020 | 17 | 7 | 379-381 | Excluded | Outcome
type | | A systematic review of refillable e-liquid nicotine content accuracy | Miller, D.R.,
Buettner-Schmidt, K., Orr, M.,
Rykal, K. and Niewojna, E. | Journal of
the American
Pharmacists
Association | 2020 | 61 | 1 | 20-26 | Excluded | Outcome
type | | Maintenance agonist treatments for opiate-dependent pregnant women | Minozzi, S. and Amato, L. and
Jahanfar, S. and Bellisario, C.
and Ferri, M. and Davoli, M. | Cochrane
Database of
Systematic
Reviews | 2020 | - | 11 | - | Excluded | Outcome
type | Table 4 continued | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |--|---|-----------------------------------|-------------------|--------|-------|---------|------------------------|---------------------| | Workshop Series to Identify, Discuss,
and Develop Recommendations
for the Optimal Generation and
Use of in Vitro Assay Data for
Tobacco Product Evaluation: Phase 1
Genotoxicity Assays | Moore, M.M., Clements, J., Desai, P., Doshi, U., Gaca, M., Guo, X., Hashizume, T., Jordan, K.G., Lee, K.M., Leverette, R. and McHugh, D., Miller-Holt, J., Phillips, G., Raabe, H., Recio, L., Roy, S., Smart, D.J., Stankowski, L.F., Thorne, D., Weber, E., Wieczorek, R., Yoshino, K. and Curren, R. | Applied In Vitro
Toxicology | 2020 | 6 | 2 | 49-63 | Excluded | Study design | | Risk versus regulation: an update on the state of e-cigarette control in Australia | Morgan, Jody and Breitbarth,
Andreas K. and Jones,
Alison L. | Internal Medicine
Journal | 2019 | 49 | 1 | 110-113 | Excluded | Outcome
type | | Protectors or puritans? Responses
to media articles about the health
effects of e-cigarettes | Morphett, Kylie and Herron,
Lisa and Gartner, Coral | Addiction
Research
& Theory | 2020 | 28 | 2 | 95-102 | Excluded | Outcome
type | | Characterization of E-cigarette coil temperature and toxic metal analysis by infrared temperature sensing and scanning electron microscopy-energy-dispersive X-ray | Mulder, H.A., Stewart, J.B.,
Blue, I.P., Krakowiak, R.I.,
Patterson, J.L., Karin, K.N.,
Royals, J.M., DuPont, A.C.,
Forsythe, K.E., Poklis, J.L.,
Poklis, A., Butler, S. N.,
Turner, J.B.M. and
Peace, M. R. | Inhalation
Toxicology | 2020 | 32 | 13 | 447-455 | Excluded | Exposure
type | | Pulmonary toxicity and inflammatory response of e-cigarette vape cartridges containing medium-chain triglycerides oil and vitamin E acetate: Implications in the pathogenesis of EVALI | Muthumalage, T. and
Lucas, J. H. and Wang, Q. and
Lamb, T. and McGraw, M. D.
and Rahman, I. | Toxics | 2020 | 8 | 8 | - | Excluded | Duplicate | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |---|--|--|-------------------|--------|-------|---------|------------------------|---------------------| | E-cigarettes versus nicotine replacement treatment as harm reduction interventions for smokers who find quitting difficult: Randomised controlled trial | Myers Smith, K.,
Phillips-Waller, A., Pesola, F.,
McRobbie, H., Przulj, D.,
Orzol, M. and Hajek, P. | Addiction | 2021 | - | - | - | Excluded | Outcome
type | | Vaping During Pregnancy: What Are
the Potential Health Outcomes and
Perceptions Pregnant Women Have? | Nagpal, T. S. and Green, C. R. and Cook, J. L. | Journal of
Obstetrics &
Gynaecology
Canada | 2020 | - | - | - | Excluded | Outcome
type | | Vaping Instead of Cigarette Smoking:
A Panacea or Just Another Form
of
Cardiovascular Risk? | Nayeri, A. and Middlekauff, H. | Canadian Journal
of Cardiology | 2020 | 37 | 5 | 690-698 | Excluded | Outcome
type | | Vaping High vs. Low Nicotine
E-Liquid | Benowitz, N., and Yassin, S. | U.S. National
Library of
Medicine,
ClinicalTrials.gov | 2019 | - | - | - | Excluded | Exposure
type | | The Acute Effects of E-cigarette
Inhalation on Vascular Function,
Microcirculation and Thrombosis | Näslund, E. | U.S. National
Library of
Medicine,
ClinicalTrials.gov | 2019 | - | - | - | Excluded | Study design | | Electronic Hookah and
Endothelial Cell Function | Rezk-Hanna, M., and Mann, S. | U.S. National
Library of
Medicine,
ClinicalTrials.gov | 2019 | - | - | - | Excluded | Study design | | The ESTxENDS Trial: pulmonary
Function Substudy | Funke-Chambour, M.,
and Auer, R. | U.S. National
Library of
Medicine,
ClinicalTrials.gov | 2019 | - | - | - | Excluded | Study design | | Biomarkers of Exposure and Effect
in Standardized Research E-cigarette
(SREC) Users | Stepanov, I., and
Vanderloo, H. | U.S. National
Library of
Medicine,
ClinicalTrials.gov | 2019 | - | - | - | Excluded | Study design | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |---|-------------------------------------|--|-------------------|--------|-------|-------|------------------------|---------------------| | Impact of Alternative
Nicotine-Delivery Products
on Combustible Cigarette Use | Piper, M.E. | U.S. National
Library of
Medicine,
ClinicalTrials.gov | 2019 | - | - | - | Excluded | Outcome
type | | Impact of New Product Standards for JUUL Among Dual JUUL/Combusted Cigarette Users | Pacek, L. | U.S. National
Library of
Medicine,
ClinicalTrials.gov | 2019 | - | - | - | Excluded | Outcome
type | | Low Nicotine Content Cigarettes in Vulnerable Populations: affective Disorders | Tidey, J.W., and Plucinski, S. | U.S. National
Library of
Medicine,
ClinicalTrials.gov | 2019 | - | - | - | Excluded | Duplicate | | Low Nicotine Content Cigarettes in
Vulnerable Populations: women of
Reproductive Age | Higgins, S.T., and
Markesich, C. | U.S. National
Library of
Medicine,
ClinicalTrials.gov | 2019 | - | - | - | Excluded | Outcome
type | | Changes in Biomarkers of Cigarette
Smoke Exposure After Switching
Either Exclusively or Partly to
JUUL ENDS | Rubinstein, M. | U.S. National
Library of
Medicine,
ClinicalTrials.gov | 2019 | - | - | - | Excluded | Study design | | Transcranial Magnetic Stimulation and Tobacco Use Disorder | Petersen, N. | U.S. National
Library of
Medicine,
ClinicalTrials.gov | 2019 | - | - | - | Excluded | Outcome
type | | JUUL vs. Mod E-cigarette Study | Smith, T. | U.S. National
Library of
Medicine,
ClinicalTrials.gov | 2020 | - | - | - | Excluded | Study design | | Understanding Factors That
Influence Electronic Cigarette
Nicotine Delivery Through PET
Imaging of Beta-2 Nicotinic
Acetylcholine Receptors | Baldassarri, S. | U.S. National
Library of
Medicine,
ClinicalTrials.gov | 2020 | - | - | - | Excluded | Outcome
type | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |--|-----------------------------------|--|-------------------|--------|-------|-------|------------------------|---------------------| | Electronic Cigarettes as a Harm
Reduction Strategy Among Patients
With COPD | Sherman, S.E., and
Stevens, E. | U.S. National
Library of
Medicine,
ClinicalTrials.gov | 2020 | - | - | - | Excluded | Outcome
type | | The ESTXENDS Trial- Effects of
Using Electronic Nicotine Delivery
Systems (ENDS/Vaporizer/E-cig)
on Olfactory Function | Auer, R. | U.S. National
Library of
Medicine,
ClinicalTrials.gov | 2020 | - | - | - | Excluded | Study design | | Acute Health Effects of Passive Vape
Among COPD Patients | Laursen, K. | U.S. National
Library of
Medicine,
ClinicalTrials.gov | 2020 | - | - | - | Excluded | Duplicate | | ESTxENDS Trial: MN Substudy -
Micronuclei in Buccal Epithelium,
a Surrogate Measure of Future
Cancer Risk, Induced by Electronic
Nicotine Delivery Systems
(ENDS/Vaporizer/E-cig) | Hopf, N., and Auer, R. | U.S. National
Library of
Medicine,
ClinicalTrials.gov | 2020 | - | - | - | Excluded | Study design | | A Study to Evaluate Nicotine Uptake
and Biomarkers in Adult Smokers
Using mybluTM Electronic Cigarettes | - | U.S. National
Library of
Medicine,
ClinicalTrials.gov | 2020 | - | - | - | Excluded | Duplicate | | PACE Vape Messaging Study | Villanti, A.C. | U.S. National
Library of
Medicine,
ClinicalTrials.gov | 2020 | - | - | - | Excluded | Outcome
type | | Cigarette Consumption After
switchinG to High or Low Nicotine
strENght E-cigaretteS In Smokers
With Schizophrenia | Capponetto, P. | U.S. National
Library of
Medicine,
ClinicalTrials.gov | 2020 | - | - | - | Excluded | Outcome
type | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |---|----------------------------------|--|-------------------|--------|-------|-------|------------------------|---------------------| | Effects of Nicotine in E-cigarettes on Smoking Behaviors | Jackson, A., and DeFrank, M. | U.S. National
Library of
Medicine,
ClinicalTrials.gov | 2020 | - | - | - | Excluded | Exposure
type | | Cardiovascular Effects of Heated
Tobacco Products (HTP) | Lundbäck, M., and
Jernberg, T | U.S. National
Library of
Medicine,
ClinicalTrials.gov | 2020 | - | - | - | Excluded | Exposure
type | | Comparative Abuse Liability Among
African American and White Smokers | Leavens, E., and Lambart, L. | U.S. National
Library of
Medicine,
ClinicalTrials.gov | 2020 | - | - | - | Excluded | Exposure
type | | Short-Term Cardiovascular Effects
of E-Cigarettes: influence of
E-Liquid pH | Helen, G., and Yassin, S. | U.S. National
Library of
Medicine,
ClinicalTrials.gov | 2020 | - | - | - | Excluded | Study design | | Clinical Trial Evaluating the Effect of
BCG Vaccination on the Incidence
and Severity of SARS-CoV-2
Infections Among Healthcare
Professionals During the COVID-19
Pandemic in Poland | Czajka, H., and Mazur, A. | U.S. National
Library of
Medicine,
ClinicalTrials.gov | 2020 | - | - | - | Excluded | Outcome
type | | Evaluation of Big Decisions in
Three South Texas School Districts | - | U.S. National
Library of
Medicine,
ClinicalTrials.gov | 2020 | - | - | - | Excluded | Outcome
type | | The Effect of Curcumin on the
Development of Prednisolone-
induced Hepatic Insulin Resistance | Knop, F.K., and Hellmann, P. | U.S. National
Library of
Medicine,
ClinicalTrials.gov | 2020 | - | - | - | Excluded | Outcome
type | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |--|-------------------------------------|--|-------------------|--------|-------|-------|------------------------|--------------------------------------| | The ESTxENDS Trial- Electronic
Nicotine Delivery Systems as an Aid
for Smoking Cessation-extension
of Follow-up | Auer, R | U.S. National
Library of
Medicine,
ClinicalTrials.gov | 2020 | - | - | - | Excluded | Outcome
type | | Relapse Prevention in Stimulant
Use Disorder | London, E.D., and
McClintick, M. | U.S. National
Library of
Medicine,
ClinicalTrials.gov | 2020 | - | - | - | Excluded | Outcome
type;
exposure
type | | Smoking Cessation in Hospitalized
Patients Using an App | Garcia-Pazo, P. | U.S. National
Library of
Medicine,
ClinicalTrials.gov | 2020 | - | - | - | Excluded | Outcome
type | | A Study to Compare the Similarity in
Efficacy and Safety Between TRS003
and China-approved Bevacizumab®
in NSCLC | Yuankai, S., and Yilin, L. | U.S. National
Library of
Medicine,
ClinicalTrials.gov | 2020 | - | - | - | Excluded | Outcome
type | | The Effectiveness of Nintendo Wii
Fit and Inspiratory Muscle Training
in Older Patients With Heart Failure | Rengin, D., and Kiliç, C. | U.S. National
Library of
Medicine,
ClinicalTrials.gov | 2020 | - | - | - | Excluded | Outcome
type | | Efficacy of Therapist Guided
e-Therapy Versus Self-Help
Therapy on Psychological Distress
Among Individuals in Oman During
COVID-19 Pandemic | Alawi, M.A. | U.S. National
Library of
Medicine,
ClinicalTrials.gov | 2020 | - | - | - | Excluded | Outcome
type | | Attenuation of Airway and
Cardiovascular Responses to
Extubation in Chronic Smokers | Abdulwahhab, A. | U.S. National
Library of
Medicine,
ClinicalTrials.gov | 2020 | - | - | - | Excluded | Exposure
type | | Pilot RCT of
Cytisine vs Combination
NRT in Relapsed Smokers | Reid, B., and Wooding, E. | U.S. National
Library of
Medicine,
ClinicalTrials.gov | 2020 | - | - | - | Excluded | Outcome
type | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |--|--|--|-------------------|--------|-------|-------|------------------------|---------------------| | Do Flavors Increase the Addiction Potential of Nicotine? | Hughes, J.R. | U.S. National
Library of
Medicine,
ClinicalTrials.gov | 2021 | - | - | - | Excluded | Study design | | E-cigarette Nicotine Study | Klemperer, E.M., and
Meyers, S. | U.S. National
Library of
Medicine,
ClinicalTrials.gov | 2021 | - | - | - | Excluded | Outcome
type | | Developing and Testing Health
Warning Labels on the ENDS Device | Maziak, W., and
Vargas-Rivera, M.E. | U.S. National
Library of
Medicine,
ClinicalTrials.gov | 2021 | - | - | - | Excluded | Outcome
type | | Sustaining Aviator Performance
During Extended Operational Flight | Feltman, K. | U.S. National
Library of
Medicine,
ClinicalTrials.gov | 2021 | - | - | - | Excluded | Exposure
type | | Concentration Impact Nicotine Salt | Liakoni, E. | U.S. National
Library of
Medicine,
ClinicalTrials.gov | 2021 | - | - | - | Excluded | Exposure
type | | Characterization of Product Use in
Smokers Switching From Cigarettes
to a RELX Electronic Nicotine
Delivery System | Adams, M., and Graff, D. | U.S. National
Library of
Medicine,
ClinicalTrials.gov | 2021 | - | - | - | Excluded | Outcome
type | | Amino Acid Profile and Muscle
Protein Synthetic Response
to Consuming Meat or
Plant-based Alternatives | Baar, K., Schaal, K., and
Kain, C. | U.S. National
Library of
Medicine,
ClinicalTrials.gov | 2021 | - | - | - | Excluded | Exposure
type | | Effects of Intravenous (IV) Citalopram Hydrochloride During Transcranial Magnetic Stimulation in Major Depressive Disorder (MDD) | - | U.S. National
Library of
Medicine,
ClinicalTrials.gov | 2021 | - | - | - | Excluded | Outcome
type | Table 4 continued | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |---|---|---|-------------------|--------|-------|-------------|------------------------|---------------------| | Food and Circadian Timing | McHill, A. | U.S. National
Library of
Medicine,
ClinicalTrials.gov | 2021 | - | - | - | Excluded | Outcome
type | | Does Smoking Intensity Predict
Cessation Rates? A Study of
Light-Intermittent, Light-Daily,
and Heavy Smokers Enrolled
in Two Telephone-Based
Counseling Interventions | Ni, Katherine and Wang,
Binhuan and Link, Alissa R.
and Sherman, Scott E. | Nicotine &
Tobacco Research | 2020 | 22 | 3 | 423-430 | Excluded | Outcome
type | | Changes in electronic cigarette use and label awareness among smokers before and after the European Tobacco Products Directive implementation in six European countries: findings from the EUREST-PLUS ITC Europe Surveys | Nikitara, K., Girvalaki, C.,
Kyriakos, C.N., Driezen, P.,
Filippidis, F.T., Kahnert, S.,
Hitchman, S.C., Mons, U.,
Fernández, E., Trofor, A.C.,
Przewoźniak, K., Demjén, T.
Katsaounou, P.A.,
Zatoński, W., Fong, G.T.,
Vardavas, C.I., and the
Eurest-Plus Consortium | European Journal
of Public Health | 2020 | 30 | Supp3 | iii62-iii67 | Excluded | Outcome
type | | Adolescents' receptivity to e-cigarette harms messages delivered using text messaging | Noar, S.M., Rohde, J.A.,
Horvitz, C., Lazard, A.J.,
Ross, J.C. and Sutfin, E.L. | Addictive
Behaviors | 2019 | 91 | - | 201-207 | Excluded | Outcome
type | | Development of a complex intervention for the maintenance of postpartum smoking abstinence: process for defining evidence-based intervention | Notley, C. and Brown, T. J.
and Bauld, L. and
Hardeman, W. and Holl and
, R. and Naughton, F. and
Orton, S. and Ussher, M. | International
Journal of
Environmental
Research and
Public Health | 2019 | 16 | 11 | - | Excluded | Outcome
type | | Incentives for smoking cessation | Notley, C., Gentry, S.,
Livingstone-Banks, J.,
Bauld, L., Perera, R. and
Hartmann-Boyce, J. | Cochrane
Database of
Systematic
Reviews | 2019 | - | 7 | - | Excluded | Outcome
type | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |---|---|---------------------------------------|-------------------|--------|-------|---------|------------------------|---------------------| | Association between electronic cigarette use and tobacco cigarette smoking initiation in adolescents: a systematic review and meta-analysis | O'Brien, D., Long, J.,
Quigley, J., Lee, C.,
McCarthy, A. and
Kavanagh, P | BMC Public Health | 2021 | 21 | 1 | 1-10 | Excluded | Outcome
type | | A randomised, open-label, cross-over clinical study to evaluate the pharmacokinetic profiles of cigarettes and e-cigarettes with nicotine salt formulations in US adult smokers | O'Connell, G., Pritchard, J.D.,
Prue, C., Thompson, J.,
Verron, T., Graff, D. and
Walele, T. | Internal and
Emergency
Medicine | 2019 | 14 | 6 | 853-861 | Excluded | Exposure
type | | Local and State Policy Action Taken
in the United States to Address
the Emergence of E-Cigarettes
and Vaping: A Scoping Review
of Literature | O'Connell, M. and Kephart, L. | Health Promotion
Practice | 2020 | - | - | - | Excluded | Outcome
type | | Vaping and Pregnancy: Health and
Policy Concerns | O'Donnell, Darby | Neonatology
Today | 2019 | 14 | 11 | 51-53 | Excluded | Outcome
type | | Tobacco harm reduction in the 21st century | O'Leary, R., and Polosa, R. | Drugs &
Alcohol Today | 2020 | 20 | 3 | 219-234 | Excluded | Outcome
type | Table 4 continued | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |---|--|---------------------------|-------------------|--------|-------|-------|------------------------|---------------------| | Critical appraisal of the European Union Scientific Committee on Health, Environmental and Emerging Risks (SCHEER) Preliminary Opinion on electronic cigarettes | O'Leary, R., Polosa, R., Li Volti, G., Alaimo, S., Anfuso, C. D. Barbagallo, I. Basile, F. Battiato, S. Bertino, G. Bianchi, A. Biondi, A. G. Brand i, M. L. Cacciola, E. Cacciola, R. R. Cacopardo, B. S. Calogero, A. E. Cambria, M. T. Campagna, D. Caraci, F. Cariola, A. Caruso, M. Caponnetto, P. Cibella, F. Di Mauro, M. Di Nuovo, S. Di Stefano, A. Drago, F. Failla, S. Faraci, R. Ferlito, S. Ferrante, M. Ferro, A. Ferro, G. A. Frasca, F. Frittitta, L. Furneri, P. M. Gallo, G. Galvano, F. Gagliano, A. Grasso, G. Guarino, F. Gulino, A. Jannini, E. A. Vignera, S. L. A. Lazzarino, G. Longo, A. Lupo, G. Malerba, M. Marletta, L. Nicolosi, G. Nocera, F. Oliveri Conti, G. Parenti, R. Pulvirenti, A. Purrello, F. Rapisarda, F. Rapisarda, V. Reibaldi, M. Rizzo, R. Ronsisvalle, S. Ruggieri, M. Santagati, M. C. Satriano, C. Sciacca, L. Signorelli, M. S. Tatullo, M. Tibullo, D. Tomaselli, V. Zanoli, L.; and Zappala, A. | Harm Reduction
Journal | 2021 | 18 | 1 | 1-15 | Excluded | Outcome type | Table 4 continued | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |--
---|---|-------------------|--------|-------|-----------|------------------------|---------------------| | Probiotics to prevent infantile colic | Ong, T. G. and Gordon, M.
and Banks, S. S. C.
and Thomas, M. R. and
Akobeng, A. K. | Cochrane
Database of
Systematic
Reviews | 2019 | 3 | - | - | Excluded | Exposure
type | | Chronic exposure to e-cig aerosols
during early development causes
vascular dysfunction and offspring
growth deficits | Orzabal, M.R.,
Lunde-Young, E.R.,
Ramirez, J.I., Howe, S.Y.,
Naik, V.D., Lee, J., Heaps, C.L.,
Threadgill, D.W. and
Ramadoss, J., | Translational
Research:
The Journal of
Laboratory &
Clinical Medicine | 2019 | 207 | - | 70-82 | Excluded | Exposure
type | | Association Between E-Cigarette Use
and Chronic Obstructive Pulmonary
Disease by Smoking Status:
Behavioral Risk Factor Surveillance
System 2016 and 2017 | Osei, A.D., Mirbolouk, M.,
Orimoloye, O.A., Dzaye, O.,
Uddin, S.I., Benjamin, E.J.,
Hall, M.E., DeFilippis, A.P.,
Bhatnagar, A., Biswal, S.S.
and Blaha, M.J., | American Journal
of Preventive
Medicine | 2020 | 58 | 3 | 336-342 | Excluded | Outcome
type | | The association between e-cigarette use and asthma among never combustible cigarette smokers: behavioral risk factor surveillance system (BRFSS) 2016 & 2017 | Osei, A.D., Mirbolouk, M.,
Orimoloye, O.A., Dzaye, O.,
Uddin, S.I., Dardari, Z.A.,
DeFilippis, A.P., Bhatnagar, A.
and Blaha, M.J. | BMC Pulmonary
Medicine | 2019 | 19 | 1 | 1-6 | Excluded | Outcome
type | | Knowledge and risk perception of
e-cigarettes and hookah amongst
youths in Lagos State, Nigeria:
An exploratory study | Osibogun, O., Odukoya, O.O.,
Odusolu, Y.O. and
Osibogun, A. | The Nigerian
postgraduate
medical journal | 2020 | 27 | 4 | 384-390 | Excluded | Outcome
type | | Primary Care Interventions for
Prevention and Cessation of Tobacco
Use in Children and Adolescents:
US Preventive Services Task Force
Recommendation Statement | Owens, D.K., Davidson, K.W.,
Krist, A.H., Barry, M.J.,
Cabana, M., Caughey, A.B.,
Curry, S.J., Donahue, K.,
Doubeni, C.A., Epling, J.W.
Kubik, M., Ogedegbe, G.,
Pbert, L., Silverstein, M.,
Simon, M.A., Tseng, C.W.
and Wong, J. B. | JAMA - Journal
of the American
Medical
Association | 2020 | 323 | 16 | 1590-1598 | Excluded | Outcome
type | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |--|---|--|-------------------|--------|-------|-----------|------------------------|---------------------| | 'The lesser devil you don't
know': A qualitative study of
smokers' responses to messages
communicating comparative risk of
electronic and combusted cigarettes | Owusu, Daniel and Lawley,
Rachel and Yang, Bo and
Henderson, Katherine and
Bethea, Brittaney and
LaRose, Christopher and
Stallworth, Sam and Popova,
Lucy | Tobacco Control:
An International
Journal | Mar | 29 | 2 | 217-223 | Excluded | Outcome
type | | An experimental study of messages communicating potential harms of electronic cigarettes | Owusu, D. and Massey, Z. and Popova, L. | PloS one | 2020 | 15 | 10 | - | Excluded | Outcome
type | | An experimental study on topical application of 2% lignocaine jelly for preventing coughing and sore throat post extubation in elective surgeries in smokers vs. non-smokers | Padhi, S. and Bhat, S. | Biomedical and
Pharmacology
Journal | 2020 | 13 | 1 | 291-298 | Excluded | Exposure
type | | Non-pharmacological care for opioid withdrawal in newborns | Pahl, A. and Young, L.
and Buus-Frank, M. E. and
Marcellus, L. and Soll, R. | Cochrane
Database of
Systematic
Reviews | 2020 | - | 12 | - | Excluded | Exposure
type | | Smoking is associated with COVID-19 progression: A meta-analysis | Patanavanich, R.
and Glantz, S.A. | Nicotine and
Tobacco Research | 2020 | 22 | 9 | 1653-1656 | Excluded | Outcome
type | | Headspace analysis of E-cigarette fluids using comprehensive two dimensional GCxGC-TOF-MS reveals the presence of volatile and toxic compounds | Patel, D., Taudte, R.V.,
Nizio, K., Herok, G.,
Cranfield, C. and Shimmon, R. | Journal of
Pharmaceutical
and Biomedical
Analysis | 2021 | 196 | - | - | Excluded | Exposure
type | | A systematic review of the impact of cigarettes and electronic cigarettes in otology | Patel, S. and Wooles, N. and Martin, T. | Journal of
Laryngology
& Otology | 2020 | 134 | 11 | 951-956 | Excluded | Outcome
type | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |---|--|--|-------------------|--------|-------|-----------|------------------------|---------------------| | Are electronic nicotine delivery systems (ENDs) helping cigarette smokers quit?-Current evidence | Patil, S., Arakeri, G., Patil, S.,
Ali Baeshen, H., Raj, T.,
Sarode, S.C., Sarode, G.S.,
Awan, K.H., Gomez, R. and
Brennan, P.A. | Journal of Oral
Pathology &
Medicine | 2020 | 49 | 3 | 181-189 | Excluded | Outcome
type | | Interventions for tobacco cessation in adults, including pregnant women: an evidence update for the US Preventive Services Task Force. | Patnode, C.D.,
Henderson, J.T., Melnikow, J.,
Coppola, E.L., Durbin, S. and
Thomas, R. | - | 2021 | - | - | - | Excluded | Outcome
type | | Vaping: "a safe alternative
to smoking" | Pearce, B. and Yadav, R.
and Hegwood, E. and
Ghafoor, A. and Mundell, J.
and Preston, T. | CHEST | 2020 | 157 | - | A121-A121 | Excluded | Study design | | The EVALI program: Recommandations for toxicological investigations in subjects with lung injury associated with vaping product use | Pelissier-Alicot, A. L. | Toxicologie
Analytique et
Clinique | 2020 | 32 | 2 | 92-94 | Excluded | Foreign
language | | A randomized, double-blind, placebo-controlled, parallel-group, 52-week pivotal study to assess the efficacy, safety, and tolerability of dupilumab in patients with moderate-to-severe chronic obstructive pulmonary disease (copd) with type 2 inflammation | Paravesino, S.N., and
Ayma, M.A.N. | Clinical Trials
Peruvian Registry | 2020 | - | - | - | Excluded | Outcome
type | | Vaping-induced lung injury in a 21-year-old woman | Perrenoud, Abby and Vetos,
Develyn and Wabwire,
Godfrey | BMJ Case Reports | 2020 | - | - | 44287 | Excluded | Study design | | Interventions for preventing venous thromboembolism in adults undergoing knee arthroscopy | Perrotta, C. and Chahla, J.
and Badariotti, G. and
Ramos, J. | Cochrane
Database of
Systematic
Reviews | 2020 | - | 5 | - | Excluded | Outcome
type | Table 4 continued | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |---|---|--|-------------------|--------|-------|-----------|------------------------|---------------------| | Research on Youth and Young
Adult Tobacco Use, 2013-2018,
From the Food and Drug
Administration-National Institutes
of Health Tobacco Centers of
Regulatory Science | Perry, C.L., Creamer, M.R.,
Chaffee, B.W., Unger, J.B.,
Sutfin, E.L., Kong, G.,
Shang, C., Clendennen, S.L.,
Krishnan-Sarin, S. and
Pentz, M.A. | Nicotine &
Tobacco Research | 2020 | 22 | 7 | 1063-1076 | Excluded | Outcome
type | | Perceived relative harm of using
e-cigarettes predicts future product
switching among US adult cigarette
and e-cigarette dual users | Persoskie, A., O'Brien, E.K.
and Poonai, K. | Addiction | 2019 | 114 | 12 | 2197-2205 | Excluded | Outcome
type | | Behavioural interventions delivered
through interactive social media
for health behaviour change, health
outcomes, and health equity in the
adult population | Petkovic, J. and Duench, S. and Trawin, J. and Dewidar, O. and Pardo Pardo, J. and Simeon, R. and DesMeules, M. and Gagnon, D. and Hatcher Roberts, J. and Hossain, A. and et al. | Cochrane
Database of
Systematic
Reviews | 2021 | - | 5 | - | Excluded | Outcome
type | | Taxation of unprocessed sugar
or
sugar-added foods for reducing their
consumption and preventing obesity
or other adverse health outcomes | Pfinder, M. and Heise, T. L.
and Hilton Boon, M. and
Pega, F. and Fenton, C.
and Griebler, U. and
Gartlehner, G. and Sommer, I.
and Katikireddi, S. V. and
Lhachimi, S. K. | Cochrane
Database of
Systematic
Reviews | 2020 | - | 4 | - | Excluded | Exposure
type | | A six-month systems toxicology inhalation/cessation study in ApoE-/- mice to investigate cardiovascular and respiratory exposure effects of modified risk tobacco products, CHTP 1.2 and THS 2.2, compared with conventional cigarettes | Phillips, B., Szostak, J., Titz, B., Schlage, W.K., Guedj, E., Leroy, P., Vuillaume, G., Martin, F., Buettner, A., Elamin, A., Sewer, A., Sierro, N., Choukrallah, M.A., Schneider, T., Ivanov, N.V., Teng, C., Tung, C.K., Lim, W., Yeo, Y.S., Vanscheeuwijck, P., Peitsch, M.C. and Hoeng, J. | Food & Chemical
Toxicology | 2019 | 126 | - | 113-141 | Excluded | Exposure
type | Table 4 continued | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |--|--|--|-------------------|--------|-------|---------|------------------------|--------------------------------------| | E-Cigarette-Associated Endothelial
Damage: A Potential Mechanism for
Erectile Dysfunction | Pincus, J., Sandoval, V.,
Dick, B., Sanekommu, G.,
Rajasekaran, R.,
Ramasamy, R. and
Raheem, O. | Sexual Medicine
Reviews | 2021 | - | - | - | Excluded | Outcome
type | | A conflict of interest is strongly associated with tobacco industry-favourable results, indicating no harm of e-cigarettes | Pisinger, C. and
Godtfredsen, N. and
Bender, A. M. | Preventive
Medicine | 2019 | 119 | - | 124-131 | Excluded | Outcome
type | | E-cigarette Advertising Exposure,
Explicit and Implicit Harm
Perceptions, and E-cigarette Use
Susceptibility Among Nonsmoking
Young Adults | Pokhrel, Pallav and Herzog,
Thaddeus A. and Fagan,
Pebbles and Unger,
Jennifer B. and Stacy,
Alan W. | Nicotine &
Tobacco Research | 2019 | 21 | 1 | 127-131 | Excluded | Outcome
type | | Heat-not-burn Tobacco Products
and the Increased Risk for
Poly-tobacco Use | Pokhrel, Pallav and Herzog,
Thaddeus A. and Kawamoto,
Crissy T. and Fagan, Pebbles | American Journal of Health Behavior | 2021 | 45 | 1 | 195-204 | Excluded | Outcome
type;
exposure
type | | Smoking cessation in individuals who use vaping as compared with traditional nicotine replacement therapies: A systematic review and meta-analysis | Pound, C. M. and Zhang, J. Z. and Kodua, A. T. and Sampson, M. | BMJ Open | 2021 | 11 | 2 | - | Excluded | Outcome
type | | Smoking history, smoking intensity,
and type of cigarette as risk factors
of bladder cancer: A literature review | Pramod, S.V., Safriadi, F.,
Hernowo, B.S., Dwiyana, R.F.
and Batista, B. | Urological Science | 2020 | 31 | 4 | 147-155 | Excluded | Outcome
type | | Nasal mucociliary clearance in smokers: A systematic review | Prasetyo, A., Sadhana, U.
and Budiman, J. | International
Archives of
Otorhinolaryngology | 2021 | 25 | - | 160-169 | Excluded | Outcome
type | | Epidemiology and adverse
consequences of hookah/waterpipe
use: A systematic review | Pratiti, R. and Mukherjee, D. | Cardiovascular
and Hematological
Agents in
Medicinal
Chemistry | 2019 | 17 | 2 | 82-93 | Excluded | Exposure
type | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |--|---|--|-------------------|--------|-------|---------|------------------------|---------------------| | Biological effects of nicotine
exposure: A narrative review of
the scientific literature | Price, L. R. and Martinez, J. | F1000Research | 2019 | 8 | - | - | Excluded | Exposure
type | | Mimicking cigarette smoke exposure to assess cutaneous toxicity | Prieux, R. and Eeman, M. and
Rothen-Rutishauser, B. and
Valacchi, G. | Toxicology in Vitro | 2020 | 62 | - | - | Excluded | Exposure
type | | Clinical handbook of psychotropic
drugs., 23rd ed | Procyshyn, Ric M. and
Bezchlibnyk-Butler, Kalyna Z.
and Jeffries, J. Joel | Clinical handbook
of psychotropic
drugs; Hogrefe
Publishing;
Germany | 2019 | - | - | - | Excluded | Study design | | Discordant bilateral bronchoalveolar lavage findings in a patient with acute eosinophilic pneumonia associated with counterfeit tetrahydrocannabinol oil vaping | Puebla Neira, D. and
Tambra, S. and Bhasin, V. and
Nawgiri, R. and Duarte, A. G. | Respiratory
Medicine
Case Reports | 2020 | 29 | - | - | Excluded | Exposure
type | | Nicotine toxicity: Protecting children from e-cigarette exposure | Quail, M. Thomas | Nursing | 2020 | 50 | 1 | 44-48 | Excluded | Exposure
type | | Evaluating Nicotine Abstinence,
Smoking Cessation, Reduction and
its Relapsed Among Electronic
Cigarettes Single and Dual
Malaysian Users: A One Year
Observational Study | Rahman, Azizur
and Mohamed,
Mohamad Haniki Nik
and Mahmood,
Syed and Nik Mohamed,
Mohamad Haniki | Journal of Pharmacy & Pharmaceutical Sciences | 2021 | 24 | - | 200-209 | Excluded | Outcome
type | | Smoke and Heart Should Stay
Apart: A Look at E Cigarettes and
Other Alternatives to Conventional
Cigarettes, and Their Impact on
Cardiovascular Health | Raja, J., Khouzam, A.,
Khouzam, N. and
Khouzam, R.N., 2021 | Current Problems
in Cardiology | 2021 | 46 | 3 | - | Excluded | Outcome
type | | Effects of Electronic Cigarettes on
Oral Cavity: A Systematic Review | Ralho A, Coelho A, Ribeiro M,
Paula A, Amaro I, Sousa J,
Marto C, Ferreira M,
Carrilho E. | Journal of
Evidence-Based
Dental Practice | 2019 | 19 | 4 | - | Excluded | Outcome
type | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |---|---|---|-------------------|--------|-------|-----------|------------------------|---------------------| | Heat not burn tobacco product-a
new global trend: Impact of
heat-not-burn tobacco products on
public health, a systematic review | Ratajczak, A. and
Jankowski, P. and Strus, P.
and Feleszko, W. | International Journal of Environmental Research and Public Health | 2020 | 17 | 2 | - | Excluded | Exposure
type | | A systamatic review on dental enamel | Ravikanth, P. and Mannam, R. | European Journal
of Molecular and
Clinical Medicine | 2020 | 7 | 7 | 5657-5663 | Excluded | Outcome
type | | Nicotine gateway effects on adolescent substance use | Ren, M. and Lotfipour, S. | Western Journal
of Emergency
Medicine | 2019 | 20 | 5 | 696-709 | Excluded | Exposure
type | | High Carbon Monoxide Levels from
Charcoal Combustion Mask Acute
Endothelial Dysfunction Induced
by Hookah (Waterpipe) Smoking
in Young Adults | Rezk-Hanna, Mary and
Mosenifar, Zab and Benowitz,
Neal L. and Rader, Florian
and Rashid, Mohamad and
Davoren, Katherine and Moy,
Norma B. and Doering, Lynn
and Robbins, Wendie and
Sarna, Linda and Li, Ning and
Chang, L. Cindy and Elashoff,
Robert M. and Victor,
Ronald G. | Circulation | 2019 | 139 | 19 | 2215-2224 | Excluded | Exposure
type | | E-cigarettes: A new hazard for children and adolescents | Richmond, S.A., Pike, I.,
Maguire, J.L. and
Macpherson, A. | Paediatrics &
Child Health | 2020 | 25 | 5 | 317-321 | Excluded | Outcome
type | | Randomized Trials of e-Cigarettes
for Smoking Cessation | Rigotti, Nancy A. | JAMA: Journal
of the American
Medical
Association | 2020 | 324 | 18 | 1835-1837 | Excluded | Outcome
type | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |---|---|--|-------------------|--------|-------|-----------|------------------------|---------------------| | Reducing pediatric exposure to environmental tobacco smoke: The effects of pediatric exposure to environmental tobacco smoke and the role of pediatric perioperative care | Riley, C. and Ladak, N. | Paediatric
Anaesthesia | 2020 | 30 | 11 | 1199-1203 | Excluded | Outcome
type | | Pine bark (Pinus spp.) extract for treating chronic
disorders | Robertson, N. U. and
Schoonees, A. and Br and , A.
and Visser, J. | Cochrane
Database of
Systematic
Reviews | 2020 | - | 9 | - | Excluded | Outcome
type | | Botulinum toxin type A versus
anticholinergics for cervical dystonia | Rodrigues, F.B., Duarte, G.S.,
Castelão, M., Marques, R.E.,
Ferreira, J., Sampaio, C.,
Moore, A.P. and Costa, J., | Cochrane
Database of
Systematic
Reviews | 2021 | - | 4 | - | Excluded | Outcome
type | | Smoking cessation intervention for reducing disease activity in chronic autoimmune inflammatory joint diseases | Roelsgaard, I.K.,
Esbensen, B.A.,
Østergaard, M., Rollefstad, S.,
Semb, A.G., Christensen, R.
and Thomsen, T. | Cochrane
Database of
Systematic
Reviews | 2019 | - | 9 | - | Excluded | Outcome
type | | E-Cigarette Health Harm Awareness
and Discouragement: Implications for
Health Communication | Rohde, Jacob A. and
Noar, Seth M. and Mendel,
Jennifer R. and Hall,
Marissa G. and Baig,
Sabeeh A. and Ribisl, Kurt M.
and Brewer, Noel T. | Nicotine &
Tobacco Research | 2020 | 22 | 7 | 1131-1138 | Excluded | Outcome
type | | Debate: should the use of e-cigarettes be encouraged among smokers? | Ross, Louise and
Watson, Jane | Nursing Times | 2019 | 115 | 4 | 22-23 | Excluded | Study design | | Association of E-cigarettes with adolescent alcohol use and binge drinking-drunkenness: A systematic review and meta-analysis | Rothrock, A. N. and Andris, H. and Swetl and , S. B. and Chavez, V. and Isaak, S. and Pagane, M. and Romney, J. and Rothrock, S. G. | American Journal
of Drug and
Alcohol Abuse | 2020 | 46 | 6 | 684-698 | Excluded | Outcome
type | Table 4 continued | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |---|--|--|-------------------|--------|-------|-----------------|------------------------|---------------------| | Biomarkers of Tobacco Exposure
Decrease After Smokers Switch to
an E-Cigarette or Nicotine Gum | Round, Elaine K. and Chen,
Peter and Taylor, Anthony K.
and Schmidt, Eckhardt | Nicotine &
Tobacco Research | 2019 | 21 | 9 | 1239-1247 | Excluded | Exposure
type | | Effect of acupuncture and auricular
acupressure on smoking cessation:
Protocol of a systematic review and
Bayesian network meta-analysis | Runjing, Dai and Jie, Zhang
and Hailiang, Zhang and
Na, Zhao and Fujian, Song
and Jingchun, Fan and Dai,
Runjing and Zhang, Jie and
Zhang, Hailiang and Zhao,
Na and Song, Fujian and Fan,
Jingchun | Medicine | 2020 | 99 | 22 | 44287 | Excluded | Outcome
type | | Free-Base and Total Nicotine,
Reactive Oxygen Species, and
Carbonyl Emissions From IQOS,
a Heated Tobacco Product | Salman, Rola and Talih,
Soha and El-Hage, Rachel
and Haddad, Christina and
Karaoghlanian, Nareg and
El-Hellani, Ahmad and Saliba,
Najat A. and Shihadeh, Alan | Nicotine &
Tobacco Research | 2019 | 21 | 9 | 1285-1288 | Excluded | Exposure
type | | Case series of patients
with e-cigarette or vaping
product-associated lung injury:
insights from a safety net hospital | Sanivarapu, Raghavendra
and Arjun, Shiva and Mashaal,
Hyfaa and Gutierrez, Alej
and ro and Meshoyrer, Daniel
and Anjum, Fatima and Iqbal,
Javed and Akella, Jagadish | CHEST | 2020 | 158 | - | A2367-A2367 | Excluded | Study design | | SÍNDROME DE BURNOUT E ESTILO
DE VIDA EM ESTUDANTES DE
ENSINO MÉDIO | Santos, Anna and Mineiro,
Henrique and Cruz, Lucas
and Santos, Luiz and Silveira,
Marise and de Pinho, Lucineia | Portuguese Journal of Mental Health Nursing / Revista Portuguesa de Enfermagem de Saude Mental | 2019 | - | 21 | 16-22 | Excluded | Foreign
language | | E-cigarettes use in the United States:
reasons for use, perceptions, and
effects on health | Sapru, Sakshi and Vardhan,
Mridula and Li, Qianhao and
Guo, Yuqi and Li, Xin and
Saxena, Deepak | BMC Public Health | 2020 | 20 | 1 | N.PAG-N.
PAG | Excluded | Outcome
type | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |--|---|--|-------------------|--------|-------|---------|------------------------|---------------------| | Severe neurological nicotine intoxication by e-cigarette liquids: Systematic literature review | Scarpino, M., Rosso, T.,
Lanzo, G., Lolli, F.,
Bonizzoli, M., Lazzeri, C.,
Mannaioni, G., Baronti, R.,
Fattapposta, F. and
Grippo, A. | Acta Neurologica
Scandinavica | 2021 | 143 | 2 | 121-130 | Excluded | Exposure
type | | Comparison of high tone therapy and transcutaneous electrical nerve stimulation therapy in chemotherapy-induced polyneuropathy | Schaffler-Schaden, D. and Sassmann, R. and Johansson, T. and Gampenrieder, S. P. and Rinnerthaler, G. and Lampl, K. and Herfert, J. and Lenzhofer, C. and L and kammer, Y. T. and Rieder, F. and et al. | Medicine | 2020 | 99 | 19 | e20149 | Excluded | Outcome
type | | An exploratory non-randomized study of a 3-month electronic nicotine delivery system (ENDS) intervention with people accessing a homeless supported temporary accommodation service (STA) in Ireland | Scheibein, F. and McGirr, K. and Morrison, A. and Roche, W. and Wells, J. S. G. | Harm Reduction
Journal | 2020 | 17 | 1 | - | Excluded | Outcome
type | | Screening strategies for hypertension | Schmidt, B. M. and
Durao, S. and Toews, I.
and Bavuma, C. M. and
Hohlfeld, A. and Nury, E. and
Meerpohl, J. J. and Kredo, T. | Cochrane
Database of
Systematic
Reviews | 2020 | - | 5 | - | Excluded | - | | Vaper, Beware: The Unique
Toxicological Profile of
Electronic Cigarettes | Schmidt, Silke | Environmental
Health
Perspectives | 2020 | 128 | 5 | - | Excluded | Study design | | MicroRNAs as epigenetic targets of cigarette smoke during embryonic development | Seelan, R. S. and
Greene, R. M. and
Pisano, M. M. | MicroRNA | 2020 | 9 | 3 | 168-173 | Excluded | Exposure
type | Table 4 continued | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |--|--|---|-------------------|--------|-------|-----------|------------------------|---------------------| | Intranasal corticosteroids for non-allergic rhinitis | Segboer, C., Gevorgyan, A.,
Avdeeva, K., Chusakul, S.,
Kanjanaumporn, J.,
Aeumjaturapat, S.,
Reeskamp, L.F., Snidvongs, K.
and Fokkens, W., | Cochrane
Database of
Systematic
Reviews | 2019 | - | 11 | - | Excluded | Outcome
type | | Indoor e-cigarette use can set off
smoke detectors: Perceptions of
an emerging issue | Seidenberg, Andrew and
Ribisl, Kurt M. | Tobacco Control:
An International
Journal | 2020 | 29 | 4 | 464-465 | Excluded | Exposure
type | | Knowledge and Awareness of
Added Sugar in Cigarettes | Seidenberg, Andrew B. and
Jo, Catherine L. and Ribisl,
Kurt M. | Nicotine &
Tobacco Research | 2019 | 21 | 12 | 1689-1694 | Excluded | Outcome
type | | Health effects of electronic cigarette
(e-cigarette) use on organ systems
and its implications for public health | Seiler-Ramadas, R. and S
and ner, I. and Haider, S. and
Grabovac, I. and Dorner, T. E. | Wiener Klinische
Wochenschrift | 2020 | - | - | 1-8 | Excluded | Outcome
type | | Primary Care-Relevant Interventions
for Tobacco and Nicotine Use
Prevention and Cessation in Children
and Adolescents: Updated Evidence
Report and Systematic Review
for the US Preventive Services
Task Force | Selph, S. and Patnode, C. and
Bailey, S. R. and Pappas, M.
and Stoner, R. and Chou, R. | JAMA - Journal
of the American
Medical
Association | 2020 | 323 | 16 | 1599-1608 | Excluded | Outcome
type | | Vaping for Tobacco Cessation:
What Does the Evidence Say? | Sergakis, Georgianna | AARC Times | 2020 | 44 | 3 | 44378 | Excluded | Outcome
type | | Evaluation of the Effects of a Brief
Educational Module About Electronic
Cigarettes on Undergraduate Health
Professional Students Knowledge,
Attitudes, and Self-Efficacy:
A Pilot Study | Sergakis, Georgianna G.
and Clutter, Jill E. and Edler,
Bianca and Ali, Basal and
Chom, Chhunheng and
Hodgson, Lorraine | Respiratory Care
Education Annual | 2019 | 28 | - | 53-57 | Excluded | Outcome
type | Table 4 continued | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) |
---|---|--|-------------------|--------|-------|-----------|------------------------|---------------------| | Feasibility, Acceptability, and
Adoption of an Inpatient Tobacco
Treatment Service at a Safety-Net
Hospital: A Mixed-Methods Study | Seth, Bhavna and Herbst, Nicole and Oleinik, Katia and Clark, Kristopher and Helm, Eric D. and O'Donnell, Charles and Fitzgerald, Carmel and Wong, Carolina and Wiener, Renda Soylemez and Kathuria, Hasmeena | Annals of the
American
Thoracic Society | 2020 | 17 | 1 | 63-71 | Excluded | Outcome
type | | A meta-analysis of microRNAs expressed in human aerodigestive epithelial cultures and their role as potential biomarkers of exposure response to nicotine-containing products | Sewer, A. and Zanetti, F. and Isk and ar, A. R. and Guedj, E. and Dulize, R. and Peric, D. and Born and , D. and Mathis, C. and Martin, F. and Ivanov, N. V. and Peitsch, M. C. and Hoeng, J. | Toxicology
Reports | 2020 | 7 | - | 1282-1295 | Excluded | Exposure
type | | Severe Acute Toxicity of Inhaled
Nicotine and e-Cigarettes: Seizures
and Cardiac Arrhythmia | Shao, Xuesi M. and Fang,
Zhuang T. | CHEST | 2020 | 157 | 3 | 506-508 | Excluded | Exposure
type | | Patterns of tobacco and e-cigarette use status in India: A cross-sectional survey of 3000 vapers in eight Indian cities | Sharan, Rajeshwar Nath
and Chanu, Tongbram
Malemnganbi and
Chakrabarty, Tapan Kumar
and Farsalinos, Konstantinos | Harm Reduction
Journal | 2020 | 17 | 1 | 1-11 | Excluded | Outcome
type | | Adolescent's Health Perceptions of
E-Cigarettes: A Systematic Review | Sharma, Anupriya and
McCausl and , Kahlia and
Jancey, Jonine | American Journal
of Preventive
Medicine | 2021 | 60 | 5 | 716-725 | Excluded | Outcome
type | | E-cigarette use among Asian
Americans: a systematic review | Shi, M. and Gette, J. A.
and Giss and aner, T. D.
and Cooke, J. T. and
Littlefield, A. K. | Journal of
Ethnicity in
Substance Abuse. | 2020 | - | - | - | Excluded | Outcome
type | | Electronic cigarettes and
e-cigarette/vaping product use
associated lung injury (EVALI) | Shinbashi, Meagan and Rubin,
Bruce K. | Paediatric
Respiratory
Reviews | 2020 | 36 | - | 87-91 | Excluded | Outcome
type | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |---|---|---|-------------------|--------|-------|-----------|------------------------|---------------------| | Heat-not-burn tobacco products:
a systematic literature review | Simonavicius, E. and
McNeill, A. and Shahab, L.
and Brose, L. S. | Tobacco control | 2019 | 28 | 5 | 582-594 | Excluded | Exposure
type | | E-cigarettes and youth:
Patterns of use, potential harms,
and recommendations | Singh, S., Windle, S.B.,
Filion, K.B., Thombs, B.D.,
O'Loughlin, J.L., Grad, R. and
Eisenberg, M.J., | Preventive
Medicine | 2020 | 133 | - | - | Excluded | Outcome
type | | Alcohol and other drug health-care providers and their client's perceptions of e-cigarette use, safety and harm reduction | Skelton, E., Guillaumier, A.,
Tzelepis, F., Walsberger, S.,
Paul, C.L., Dunlop, A.J.,
Palazzi, K. and Bonevski, B. | Drug and Alcohol
Review | 2021 | - | - | - | Excluded | Outcome
type | | Cardiovascular effects of electronic
cigarettes: A systematic review and
meta-analysis | Skotsimara, G., Antonopoulos, A.S., Oikonomou, E., Siasos, G., Ioakeimidis, N., Tsalamandris, S., Charalambous, G., Galiatsatos, N., Vlachopoulos, C. and Tousoulis, D. | European Journal
of Preventive
Cardiology | 2019 | 26 | 11 | 1219-1228 | Excluded | Outcome
type | | Perceptions of E-cigarettes and
Flavor Restrictions among Tobacco
Retailers in Los Angeles | Smiley, Sabrina L. and
Heesung, Shin and Rose,
Shyanika W. and Rodriguez,
Yaneth L. and Barahona, Rosa
and Baezconde-Garbanati,
Lourdes | American Journal
of Health Behavior | 2020 | 44 | 6 | 893-901 | Excluded | Outcome
type | | The emerging norms of e-cigarette use among adolescents: A meta-ethnography of qualitative evidence | Smith, H., Lucherini, M.,
Amos, A. and Hill, S. | International
Journal of Drug
Policy | 2021 | 94 | - | - | Excluded | Outcome
type | | Impact of E-cigarette Sampling
on Cigarette Dependence and
Reinforcement Value | Smith, Tracy T. and
Wahlquist, Amy E. and
Heckman, Bryan W. and
Cummings, K. Michael and
Carpenter, Matthew J. | Nicotine &
Tobacco Research | 2020 | 22 | 2 | 297-301 | Excluded | Outcome
type | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |--|---|---|-------------------|--------|-------|-----------|------------------------|---------------------| | Main and Interactive Effects of
Nicotine Product Type on Sleep
Health Among Dual Combustible
and E-Cigarette Users | So, C.J., Meers, J.M.,
Alfano, C.A., Garey, L.
and Zvolensky, M.J., | American Journal on Addictions | 2021 | 30 | 2 | 147-155 | Excluded | Duplicate | | Indoor Air Quality and Passive
E-cigarette Aerosol Exposures
in Vape-Shops | Son, Yeongkwon and
Giovenco, Daniel P. and
Delnevo, Cristine and
Khlystov, Andrey and
Samburova, Vera and Meng,
Qingyu | Nicotine &
Tobacco Research | 2020 | 22 | 10 | 1772-1779 | Excluded | Exposure
type | | US young adults' perceived effectiveness of draft pictorial e-cigarette warning labels | Sontag, J., Manderski, M.T.B.,
Hammond, D. and
Wackowski, O.A., | Tobacco Control:
An International
Journal | 2019 | 28 | e1 | e49-e51 | Excluded | Outcome
type | | Baseline assessment of noticing e-cigarette health warnings among youth and young adults in the United States, Canada and England, and associations with harm perceptions, nicotine awareness and warning recall | Sontag, J. M. and
Wackowski, O. A.
and Hammond, D. | Preventive
Medicine Reports | 2019 | 16 | - | - | Excluded | Exposure
type | | Health practitioners should caution
about misinformation and association
of adverse effects of electronic
cigarette use and COVID-19 | Soule, E. K. and
Kheradmand, F.
and Eissenberg, T. | Preventive
Medicine Reports | 2020 | 20 | - | - | Excluded | Outcome
type | | Radiological findings of e-cigarette
or vaping product use associated
lung injury: A systematic review | Sreedharan, S., Mian, M.,
Robertson, R.A. and
Rhodes, A | Heart and Lung | 2021 | 50 | 5 | 736-741 | Excluded | Outcome
type | | Intersection of smoking, e-cigarette use, obesity, and metabolic and bariatric surgery: a systematic review of the current state of evidence | Srikanth, N. and Xie, L.
and Morales-Marroquin, E.
and Ofori, A. and
de la Cruz-Munoz, N.
and Messiah, S. E. | Journal of
Addictive
Diseases | 2021 | 39 | 3 | 331-346 | Excluded | Outcome
type | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |---|--|---|-------------------|--------|-------|-----------|------------------------|---------------------| | GPs' and nurses' perceptions of electronic cigarettes in England: a qualitative interview study | Stepney, Melissa and
Aveyard, Paul and Begh,
Rachna | British Journal of
General Practice | 2019 | 69 | 678 | e8-e14 | Excluded | Outcome
type | | Electronic cigarettes in physician practice: a complex debate | Stone, Emily and Marshall,
Henry | Internal Medicine
Journal | 2019 | 49 | 4 | 438-445 | Excluded | Outcome
type | | Toxic ketene gas forms on vaping
Vitamin E acetate prompting
interest in its possible role in
the EVALI outbreak | Strongin, R. M. | Proceedings of the
National Academy
of Sciences of
the United States
of America | 2020 | 117 | 14 | 7553-7554 | Excluded | Study design | | An introduction to the electronic waterpipe | Stroup, A. M. and
Branstetter, S. A. | Addictive
Behaviors | 2019 | 91 | - | 90-94 | Excluded | Outcome
type | | Electronic nicotine delivery systems:
Oral health implications and
oral cancer risk | Sultan, Ahmed S. and Jessri,
Maryam and Farah, Camile S. | Journal of Oral
Pathology &
Medicine | 2021 | 50 | 3 | 316-322 | Excluded | - | | Implications of electronic cigarette use for depressive mood: A nationwide cross-sectional study | Sumin, Lee
and Yunhwan, Oh
and Hyeonju, Kim and Mihee,
Kong and Jihyun, Moon and
Lee, Sumin and Oh, Yunhwan
and Kim, Hyeonju and Kong,
Mihee and Moon, Jihyun | Medicine | 2020 | 99 | 40 | 44348 | Excluded | Outcome
type | | Perceived effectiveness of objective features of pictorial warning messages | Sutton, Jazmyne A. and Yang,
Sijia and Cappella, Joseph N. | Tobacco Control:
An International
Journal | 2019 | 28 | e1 | e24-e30 | Excluded | Outcome
type | | Nicotine Inhalation and
Suicide: Clinical Correlates
and Behavioral Mechanisms | Swann, A. C. and
Graham, D. P. and
Wilkinson, A. V.
and Kosten, T. R. | American Journal on Addictions | 2021 | - | - | - | Excluded | Exposure
type | | Electronic Cigarettes and Head and
Neck Cancer Risk - Current State
of Art | Szukalska M, Szyfter K,
Florek E, Rodrigo JP,
Rinaldo A, Mäkitie AA,
Strojan P, Takes RP, Suárez C,
Saba NF, Braakhuis BJM,
Ferlito A. | Cancers | 2020 | 12 | 11 | 3274 | Excluded | Duplicate | Table 4 continued | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |---|---|------------------------|-------------------|--------|-------|---------|------------------------|---------------------| | Might limiting liquid nicotine concentration result in more toxic electronic cigarette aerosols? | Talih, S., Salman, R.,
El-Hage, R., Karam, E.,
Karaoghlanian, N.,
El-Hellani, A., Saliba, N.,
Eissenberg, T. and
Shihadeh, A | Tobacco control | 2021 | 30 | 3 | 348-350 | Excluded | Exposure
type | | A comparison of the electrical characteristics, liquid composition, and toxicant emissions of JUUL USA and JUUL UK e-cigarettes | Talih, S., Salman, R.,
El-Hage, R., Karam, E.,
Salam, S., Karaoghlanian, N.,
El-Hellani, A., Saliba, N.
and Shihadeh, A | Scientific reports | 2020 | 10 | 1 | 1-4 | Excluded | Outcome
type | | E-Cigarettes and
Cardiopulmonary Health | Tarran, R., Barr, R.G., Benowitz, N.L., Bhatnagar, A., Chu, H.W., Dalton, P., Doerschuk, C.M., Drummond, M.B., Gold, D.R., Goniewicz, M.L. and Gross, E.R and Hansel, N. N., Hopke, P. K., Kloner, R. A., Mikheev, V. B., Neczypor, E. W., Pinkerton, K. E., Postow, L., Rahman, I., Samet, J. M., Salathe, M., Stoney, C. M., Tsao, P. S., Widome, R., Xia, T., Xiao, D. and Wold, L. E. | Function | 2021 | 2 | 2 | - | Excluded | Outcome
type | | E-cigarette, or vaping, product use-associated lung injury in adolescents: a review of imaging features | Thakrar, Pooja D. and Boyd,
Kevin P. and Swanson,
Craig P. and Wideburg,
Eric and Kumbhar, Sachin S. | Pediatric
Radiology | 2020 | 50 | 3 | 338-344 | Excluded | Exposure
type | | E-cigarettes: time to realign our approach? | Strick, K | The Lancet | 2019 | 394 | 1297 | 10-1016 | Excluded | Outcome
type | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |---|---|--|-------------------|--------|-------|-----------|------------------------|---------------------| | Nicotine addiction as a moral problem: Barriers to e-cigarette use for smoking cessation in two working-class areas in Northern England | Thirlway, Frances | Social Science
& Medicine | 2019 | 238 | - | - | Excluded | Outcome
type | | Risk of neuropsychiatric and cardiovascular adverse events following treatment with varenicline and nicotine replacement therapy in the UK Clinical Practice Research Datalink: a case cross-over study | Thomas, Kyla H. and Davies,
Neil M. and Taylor, Amy E.
and Taylor, Gemma M. J. and
Gunnell, David and Martin,
Richard M. and Douglas, Ian | Addiction | 2021 | 116 | 6 | 1532-1545 | Excluded | Outcome
type | | Genotoxicity evaluation of tobacco
and nicotine delivery products:
Part Two. In vitro micronucleus assay | Thorne, D., Leverette, R.,
Breheny, D., Lloyd, M.,
McEnaney, S., Whitwell, J.,
Clements, J., Bombick, B.
and Gaça, M. | Food and
Chemical
Toxicology | 2019 | 132 | - | - | Excluded | Duplicate | | Varenicline: mode of action, efficacy, safety and accumulated experience salient for clinical populations | Tonstad, S., Arons, C.,
Rollema, H., Berlin, I.,
Hajek, P., Fagerström, K.,
Els, C., McRae, T. and Russ, C. | Current Medical
Research and
Opinion | 2020 | 36 | 5 | 713-730 | Excluded | Outcome
type | | Vaping-associated lung injury | Treese, N. M. and Pitarys, S. | U.S. Pharmacist | 2020 | 45 | 7 | HS2-HS8 | Excluded | Study design | | Knowledge, Attitudes, and
Perceptions of Young Adults
About Electronic Nicotine Delivery
Systems in the United States:
An Integrative Review | Tremblay, B. and Turk,
M. T. and Cooper, M. R.
and Zoucha, R. | Journal of
Cardiovascular
Nursing | 2020 | 30 | - | - | Excluded | Outcome
type | | Tweets About Acute Nicotine
Toxicity Due to e-Liquid Exposure | Trigger, S. and Johnson, M. A. and Zarndt, A. N. and Hill, D. K. | Tobacco
Regulatory
Science | 2021 | 7 | 1 | 46-58 | Excluded | Exposure
type | | Smoking cessation in asthmatic patients and its impact | Underner, M. and Peiffer, G. and Perriot, J. and Jaafari, N. | Revue des
Maladies
Respiratoires | 2020 | 38 | 1 | 87-107 | Excluded | Outcome
type | Table 4 continued | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |---|--|---|-------------------|--------|-------|-----------|------------------------|-----------------------------------| | Contribution of electronic cigarettes in smoking patients with psychotic disorders. A literature review | Underner, M. and Perriot, J.
and Brousse, G. and de
Chazeron, I. and Schmitt, A.
and Peiffer, G. and Afshari, R.
and Ebrahimighavam, S. and
Jaafari, N. | Encephale. | 2021 | - | - | - | Excluded | Exposure
type | | Stopping and reducing smoking in patients with schizophrenia | Underner, M. and Perriot, J. and Brousse, G. and de Chazeron, I. and Schmitt, A. and Peiffer, G. and Harika-Germaneau, G. and Jaafari, N. | Encephale | 2019 | 45 | 4 | 345-356 | Excluded | Outcome
type | | [Why stopping smoking is
difficult in patients suffering from
schizophrenia? How better to
take care of them?] | Underner, M. and Perriot, J.
and Peiffer, G. and
Harika-Germaneau, G.
and Jaafari, N. | Revue Medicale
de Liege | 2019 | 74 | 1 | 23-27 | Excluded | Duplicate;
foreign
language | | [Electronic cigarette use in patients
with asthma] | Underner, M. and Perriot, J. and Peiffer, G. and Jaafari, N. | Revue Medicale
de Liege | 2020 | 75 | 9 | 613-618 | Excluded | Foreign
language | | "I'm using cigarettes to quit JUUL":
An analysis of Twitter posts about
JUUL cessation | Unger, Jennifer B. and
Rogers, Christopher and
Barrington-Trimis, Jessica
and Majmundar, Anuja and
Sussman, Steve and Allem,
Jon-Patrick and Soto,
Daniel W. and Cruz,
Tess Boley | Addictive
Behaviors Reports | 2020 | 12 | - | - | Excluded | Outcome
type | | [The e-cigarette: a toxicological box
of Pandora] | van den Berg, M. | Nederlands
Tijdschrift voor
Geneeskunde | 2020 | 164 | - | - | Excluded | Duplicate;
foreign
language | | Comparison of monoamine oxidase inhibition by cigarettes and modified risk tobacco products | van der Toorn, M.
and Koshibu, K. and
Schlage, W. K. and Majeed, S.
and Pospisil, P. and Hoeng, J.
and Peitsch, M. C. | Toxicology
Reports | 2019 | 6 | - | 1206-1215 | Excluded | Outcome
type | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |---|--|---|-------------------|--------|-------|-----------|------------------------|---------------------| | Approaches for discontinuation versus continuation of long-term antidepressant use for depressive and anxiety disorders in adults | Van Leeuwen, E. and
van Driel, M. L. and
Horowitz, M. A. and
Kendrick, T. and Donald, M.
and De Sutter, A. I. M.
and Robertson, L. and
Christiaens, T. | Cochrane
Database of
Systematic
Reviews | 2021 | - | 4 | - | Excluded | Exposure
type | | Vaping epidemic in US teens:
Problem and solutions | Venkata, A. N. and
Palagiri, R. D. R. and
Vaithilingam, S. | Current Opinion
in
Pulmonary
Medicine | 2021 | 27 | 2 | 88-94 | Excluded | Outcome
type | | E-cigarettes: Out of the frying pan into the fire? | Venkatnarayan, K.,
Rajamuri, N.K.R.,
Krishnaswamy, U.M.,
Devaraj, U., Ramachandran, P.
and Veluthat, C. | Lung India | 2020 | 37 | 4 | 329-332 | Excluded | Study design | | Interventions to reduce tobacco use in people experiencing homelessness | Vijayaraghavan, M. and
Elser, H. and Frazer, K. and
Lindson, N. and Apollonio, D. | Cochrane
Database of
Systematic
Reviews | 2020 | - | 12 | - | Excluded | Outcome
type | | Impact of Brief Nicotine Messaging
on Nicotine-Related Beliefs in a
U.S. Sample | Villanti, Andrea C.
and West, Julia C.
and Mays, Darren and
Donny, Eric C. and
Cappella, Joseph N. and
Strasser, Andrew A. | American Journal
of Preventive
Medicine | 2019 | 57 | 4 | e135-e142 | Excluded | Outcome
type | | Vaping: Safer Than Smoking? | Villar, Paola Galan and
Alhasan, Faysal and
Lippmann, Steven | Southern
Medical Journal | 2020 | 113 | 3 | 146-146 | Excluded | Study design | | Dermatologic manifestations associated with electronic cigarette use | Visconti, M. J. and
Ashack, K. A. | Journal of
the American
Academy of
Dermatology | 2019 | 81 | 4 | 1001-1007 | Excluded | Outcome
type | Table 4 continued | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |---|--|--|-------------------|--------|-------|-----------|------------------------|---------------------| | The E-cigarette ban in India-A step in the right direction? | Vishal Rao, Uchilla S.
and Arakeri, Gururaj and
Ravishankar, Sambhavi and
Kar, Ankita and Thakur,
Shalini and Li, Ryan J. and
Dhananjay, K. V. and Surya,
Tejaswi and Chaturvedi,
Pankaj and Gomez, Ricardo S.
and Brennan, Peter A. and
Dhananjay, K. V. | Journal of Oral
Pathology &
Medicine | 2020 | 49 | 7 | 617-620 | Excluded | Outcome
type | | E-vaping and high-fat diet consumption: It's all a hazy memory | Vlahos, Ross | Brain, Behavior,
and Immunity | 2021 | 95 | - | 23-24 | Excluded | Outcome
type | | Randomized within-subject trial to
evaluate smokers' initial perceptions,
subjective effects and nicotine
delivery across six vaporized
nicotine products | Voos, Natalie and Kaiser,
Lisa and Mahoney, Martin C.
and Bradizza, Clara M.
and Kozlowski, Lynn T.
and Benowitz, Neal L. and
O'Connor, Richard J. and
Goniewicz, Maciej L. | Addiction | 2019 | 114 | 7 | 1236-1248 | Excluded | Duplicate | | A simple predictive model for estimating relative e-cigarette toxic carbonyl levels | Vreeke, S. and Zhu, X. and Strongin, R. M. | PLoS ONE | 2020 | 15 | 8 | - | Excluded | Exposure
type | | Injuries associated with electronic nicotine delivery systems: A systematic review | Vyncke, Tom and De Wolf,
Edward and Hoeksema,
Henk and Verbelen, Jozef
and De Coninck, Petra and
Buncamper, Marlon and
Monstrey, Stan and Claes,
Karel E. Y. and Buncamper, M.
and Claes, Karel Ey | Journal of Trauma
& Acute Care
Surgery | 2020 | 89 | 4 | 783-791 | Excluded | Outcome
type | | How safe are e-cigarettes? | Wadia, R. | British Dental
Journal | 2021 | 230 | - | 662 | Excluded | Study design | Table 4 continued | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |---|--|--|-------------------|--------|-------|-----------|------------------------|---------------------| | Nicotine patches used in combination with e-cigarettes (with and without nicotine) for smoking cessation: a pragmatic, randomised trial | Walker, N. and Parag, V. and
Verbiest, M. and Laking, G.
and Laugesen, M. and
Bullen, C. | The lancet.
Respiratory
medicine | 2020 | 8 | 1 | 54-64 | Excluded | Outcome
type | | Effectiveness and safety of nicotine patches combined with e-cigarettes (with and without nicotine) for smoking cessation: study protocol for a randomised controlled trial | Walker, N. and Verbiest, M.
and Kurdziel, T. and
Laking, G. and Laugesen, M.
and Parag, V. and Bullen, C. | BMJ open | 2019 | 9 | 2 | - | Excluded | Outcome
type | | Just a spoonful of sugar helps the
messages go down: Using stories and
vicarious self-affirmation to reduce
e-cigarette use | Walter, Nathan and
Demetriades, Stefanie Z.
and Murphy, Sheila T. | Health
Communication | 2019 | 34 | 3 | 352-360 | Excluded | Outcome
type | | Repurposing dextromethorphan and metformin for treating nicotine-induced cancer by directly targeting CHRNA7 to inhibit JAK2/STAT3/SOX2 signaling | Wang, L. and Liang, D. and
Xiong, X. and Lin, Y. and
Zhu, J. and Yao, Z. and
Wang, S. and Guo, Y. and
Chen, Y. and Geary, K. and
Pan, Y. and Zhou, F. and
Gao, S. and Zhang, D. and
Yeung, S. C. J. and Zhang, H. | Oncogene | 2021 | 40 | 11 | 1974-1987 | Excluded | Exposure
type | | Comparison of biological
and transcriptomic effects of
conventional cigarette and electronic
cigarette smoke exposure at
toxicological dose in BEAS-2B cells | Wang, L. and Wang, Y. and
Chen, J. and Yang, X. M. and
Jiang, X. T. and Liu, P. and
Li, M. | Ecotoxicology and
Environmental
Safety | 2021 | 222 | - | - | Excluded | Exposure
type | | E-cigarette-induced pulmonary inflammation and dysregulated repair are mediated by nAChR a7 receptor: role of nAChR a7 in SARS-CoV-2 Covid-19 ACE2 receptor regulation | Wang, Qixin and Sundar,
Isaac K. and Li, Dongmei
and Lucas, Joseph H. and
Muthumalage, Thivanka and
McDonough, Samantha R.
and Rahman, Irfan | Respiratory
Research | 2020 | 21 | 1 | 154 | Excluded | Exposure
type | | E-Cigarette Use and Adult Cigarette
Smoking Cessation: A Meta-Analysis | Wang, R. J. and Bhadriraju, S. and Glantz, S. A. | American Journal of Public Health | 2021 | 111 | 2 | 230-246 | Excluded | Outcome
type | Table 4 continued | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |---|---|-------------------------------------|-------------------|--------|-------|-----------------|------------------------|--------------------------------------| | Awareness and use of e-cigarettes among university students in Shanghai, China | Wang, W. and Lu, M. and
Cai, Y. and Feng, N. | Tobacco Induced
Diseases | 2020 | 18 | - | - | Excluded | Outcome
type | | A Qualitative Exploration of
Consumers' Perceived Impacts,
Behavioural Reactions, and Future
Reflections of the EU Tobacco
Products Directive (2017) as
Applied to Electronic Cigarettes | Ward, Emma and Anholt,
Claudia and Gentry, Sarah
and Dawkins, Lynne and Holl
and , Richard and Notley,
Caitlin | Tobacco Use
Insights | 2020 | 13 | - | 44440 | Excluded | Outcome
type | | What are the reasons that smokers reject ENDS? A national probability survey of U.S. Adult smokers, 2017-2018 | Weaver, Scott R. and
Heath, J. Wesley and Ashley,
David L. and Huang, Jidong
and Pechacek, Terry F. and
Eriksen, Michael P. | Drug & Alcohol
Dependence | 2020 | 211 | - | N.PAG-N.
PAG | Excluded | Outcome
type | | Sources of Aerosol Dispersion
During Singing and Potential
Safety Procedures for Singers | Westphalen, C. and
Kniesburges, S. and
Veltrup, R. and Gantner, S.
and Peters, G. and
Benthaus, T. and Jakubass, B.
and Koberlein, M.
and Dollinger, M. and
Echternach, M. | Journal of Voice. | 2021 | - | - | - | Excluded | Outcome
type;
exposure
type | | E-Cigarette Exposure Delays
Implantation and Causes Reduced
Weight Gain in Female Offspring
Exposed In Utero | Wetendorf, Margeaux and
R and all, Lewis T. and
Lemma, Mahlet T. and Hurr,
Sophia H. and Pawlak,
John B. and Tarran, Robert
and Doerschuk, Claire M. and
Caron, Kathleen M. | Journal of the
Endocrine Society | 2019 | 3 | 10 | 1907-1916 | Excluded | Outcome
type | | [Studies on toxicity and inflammatory reactions induced by e-cigarettes: In vitro exposure of human nasal mucosa cells to propylene glycol at the air-liquid interface] | Wiest, F. and Scherzad, A.
and Ickrath, P. and Poier, N.
and Hackenberg, S. and
Kleinsasser, N. | HNO | 2021 | - | - | - | Excluded | Duplicate | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |---
---|------------------------------------|-------------------|--------|-------|-----------------------|------------------------|---------------------| | E-cigarette use and respiratory
disorders: An integrative
review of converging evidence
from epidemiological and
laboratory studies | Wills, T. A. and Soneji, S. S. and Choi, K. and Jaspers, I. and Tam, E. K. | European
Respiratory
Journal | 2021 | 57 | 1 | - | Excluded | Outcome
type | | E-cigarettes are safer than smoking
but not without risks, concludes
toxicity review | Wise, J. | BMJ (Clinical research ed.) | 2020 | - | - | - | Excluded | Study design | | The association between perceived e-cigarette and nicotine addictiveness, information-seeking, and e-cigarette trial among U.S. adults | Wiseman, K. P. and
Margolis, K. A. and
Bernat, J. K. and Grana, R. A. | Preventive
Medicine | 2019 | 118 | - | 66-72 | Excluded | Outcome
type | | Acute and subacute inhalation toxicity assessment of WS-23 in Sprague-Dawley rats | Wu, Z. H. and Liu, Y. S. and
Li, X. D. and Xu, T. and Xu, J.
and Yang, X. M. and Ma, R. Q.
and Jiang, X. T. | Journal of Applied
Toxicology. | 2021 | - | - | - | Excluded | Study design | | E-cigarette users are associated with asthma disease: A meta-analysis | Xian, S. and Chen, Y. | Clinical
Respiratory
Journal | 2021 | 15 | 5 | 457-466 | Excluded | Outcome
type | | Association of Electronic Cigarette
Use With Incident Respiratory
Conditions Among US Adults
From 2013 to 2018 | Xie, Wubin and Kathuria, Hasmeena and Galiatsatos, Panagis and Blaha, Michael J. and Hamburg, Naomi M. and Robertson, Rose Marie and Bhatnagar, Aruni and Benjamin, Emelia J. and Stokes, Andrew C. | JAMA Network
Open | 2020 | e3 | 11 | e2020816-
e2020816 | Excluded | Outcome
type | Table 4 continued | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |--|---|---|-------------------|--------|-------|---------|------------------------|---------------------| | Gender differences in reasons for
using electronic cigarettes and
product characteristics: Findings
from the 2018 ITC Four Country
Smoking and Vaping Survey | Yimsaard, P. and
McNeill, A. and Yong, H. H.
and Cummings, K. M.
and Chung-Hall, J. and
Hawkins, S. S. and Quah, A. C. K.
and Fong, G. T. and
O'Connor, R. J. and
Hitchman, S. C. | Nicotine and
Tobacco Research | 2021 | 23 | 4 | 678-686 | Excluded | Outcome
type | | Association of Internet Addiction
with Adolescents' Lifestyle:
A National School-Based Survey | Ying Ying, C. and
Awaluddin, S. M. and
Kuang Kuay, L. and
Siew Man, C. and
Baharudin, A. and Miaw Yn, L.
and Sahril, N. and Omar, M. A.
and Ahmad, N. A. and
Ibrahim, N. | International
Journal of
Environmental
Research &
Public Health | 2021 | 18 | 1 | 168 | Excluded | Duplicate | | Measurement of Electronic Cigarette
Frequency of Use Among Smokers
Participating in a Randomized
Controlled Trial | Yingst, Jessica and Foulds,
Jonathan and Veldheer,
Susan and Cobb, Caroline O.
and Yen, Miao-Shan and
Hrabovsky, Shari and
Allen, Sophia I. and Bullen,
Christopher and Eissenberg,
Thomas | Nicotine &
Tobacco Research | 2020 | 22 | 5 | 699-704 | Excluded | Outcome
type | | Nicotine absorption during electronic cigarette use among regular users | Yingst, J. M. and Foulds, J. and Veldheer, S. and Hrabovsky, S. and Trushin, N. and Eissenberg, T. T. and Williams, J. and Richie, J. P. and Nichols, T. T. and Wilson, S. J. and Hobkirk, A. L. | PLoS ONE | 2019 | 14 | 7 | - | Excluded | Exposure
type | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |---|---|--|-------------------|--------|-------|-----------|------------------------|---------------------| | Reasons for regular vaping and for its
discontinuation among smokers and
recent ex-smokers: findings from the
2016 ITC Four Country Smoking and
Vaping Survey | Yong, H.H., Borland, R.,
Cummings, K.M., Gravely, S.,
Thrasher, J.F., McNeill, A.,
Hitchman, S., Greenhalgh, E.,
Thompson, M.E. and
Fong, G.T. | Addiction | 2019 | 114 | - | 35-48 | Excluded | Outcome
type | | 위해감축의 관점에서 본 전자담배 | Yoo Seock, Cheong | Journal of the
Korean Medical
Association /
Taehan Uisa
Hyophoe Chi | 2020 | 63 | 2 | 105-111 | Excluded | Foreign
language | | Gross and Histopathological
Findings in the First Reported
Vaping-Induced Lung Injury Death
in the United States | Youmans, A. J.
and Harwood, J. | The American journal of forensic medicine and pathology | 2020 | 41 | 1 | 44287 | Excluded | Study design | | Real-Time Digital Surveillance of
Vaping-Induced Pulmonary Disease | Yulin, Hswen and Brownstein,
John S. and Hswen, Yulin | New England
Journal of
Medicine | 2019 | 381 | - | 1778-1780 | Excluded | Outcome
type | | [Analysis of electronic cigarettes safety] | Zeng, D. C. and Lu, L. M. and
Zhao, X. S. and Yang, S. Y.
and Jiang, Y. and Tong, Z.
and Feng, Y. | Chung-Hua Chieh Ho Ho Hu Hsi Tsa Chih Chinese Journal of Tuberculosis & Respiratory Diseases | 2019 | 42 | 5 | 393-397 | Excluded | Foreign
language | | Electronic cigarettes: Emerging trends and research hotspots | Zhang, Q. and Fan, X. and
Yue, Y. and Zheng, R. | Tobacco Induced
Diseases | 2020 | 18 | - | - | Excluded | Outcome
type | | More to Explore: Further Definition of
Risk Factors for COPD - Differential
Gender Difference, Modest Elevation
in PM2.5, and e-Cigarette Use | Zhang, Y. and Wang, L. and
Mutlu, G. M. and Cai, H. | Frontiers in
Physiology | 2021 | - | - | - | Excluded | Duplicate | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |--|--|---------------------------------------|-------------------|--------|-------|-----------|------------------------|---------------------| | The effect of e-cigarettes on smoking cessation and cigarette smoking initiation: An evidence-based rapid review and meta-analysis | Zhang, Y. Y. and Bu, F. L. and
Dong, F. and Wang, J. H. and
Zhu, S. J. and Zhang, X. W.
and Robinson, N. and Liu, J. P. | Tobacco Induced
Diseases | 2021 | 19 | - | - | Excluded | Wrong
outcome | | Reasons why Chinese smokers prefer
not to use electronic cigarettes | Zongshuan, Duan and Yu,
Wang and Jidong, Huang
and Redmon, Pamela B.
and Eriksen, Michael P. | Tobacco Induced
Diseases | 2020 | 18 | - | 44531 | Excluded | Wrong
outcome | | Electronic cigarettes: A task
force report from the European
Respiratory Society | Bals, R. and Boyd, J. and
Esposito, S. and Foronjy, R.
and Hiemstra, P. S. and
Jimenez-Ruiz, C. A.
and Katsaounou, P. and
Lindberg, A. and Metz, C.
and Schober, W. and
Spira, A. and Blasi, F. | European
Respiratory
Journal | 2019 | 53 | 2 | - | Excluded | Study design | | Selected Harmful and Potentially
Harmful Constituents Levels in
Commercial e-Cigarettes | Belushkin, M. and Djoko, D. T.
and Esposito, M. and
Korneliou, A. and Jeannet, C.
and Lazzerini, M. and
Jaccard, G. | Chemical
Research in
Toxicology | 2020 | 33 | 9 | 657-668 | Excluded | Wrong
outcome | | 2019 Year in Review: Aerosol Therapy | Berlinski, A. | Respiratory Care | 2020 | 65 | 5 | 705-712 | Excluded | Study design | | An update on controversies in e-cigarettes | Bhatt, J.M., Ramphul, M.
and Bush, A | Paediatric
Respiratory
Reviews | 2020 | 36 | - | 75-86 | Excluded | Study design | | Electronic nicotine delivery systems and pregnancy: Recent research on perceptions, cessation, and toxicant delivery | Brel and , A. and
McCubbin, A. and Ashford, K. | Birth Defects
Research | 2019 | 111 | 17 | 1284-1293 | Excluded | Study design | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |--|--|---|-------------------|--------|-------|-----------|------------------------|---------------------| | The electronic cigarette epidemic in youth and young adults: A practical review |
Burt, B. and Li, J. | Journal of
the American
Academy
of Physician
Assistants | 2020 | 33 | 3 | 17-23 | Excluded | Study design | | Toxicity of electronic cigarettes: A general review of the origins, health hazards, and toxicity mechanisms | Cao, Y. and Wu, D. and Ma, Y. and Ma, X. and Wang, S. and Li, F. and Li, M. and Zhang, T. | Science of the
Total Environment | 2021 | 772 | - | - | Excluded | Study design | | Pulmonary Toxicity and the
Pathophysiology of Electronic
Cigarette, or Vaping Product,
Use Associated Lung Injury | Ch and , H. S. and
Muthumalage, T. and
Maziak, W. and Rahman, I. | Frontiers in
Pharmacology | 2019 | 10 | 1619 | - | Excluded | Study design | | Identification of flavouring chemicals
and potential toxicants in e-cigarette
products in Ontario, Canada | Czoli, C.D., Goniewicz, M.L.,
Palumbo, M., Leigh, N.,
White, C.M. and Hammond, D | Canadian Journal
of Public Health | 2019 | 110 | 5 | 542-550 | Excluded | Wrong
outcome | | Policy, toxicology and physicochemical considerations on the inhalation of high concentrations of food flavour | Dinu, V., Kilic, A., Wang, Q.,
Ayed, C., Fadel, A.,
Harding, S.E., Yakubov, G.E.
and Fisk, I.D. | Npj Science
of Food | 2020 | 4 | 15 | - | Excluded | Study design | | Impact of Electronic Cigarettes
on Various Organ Systems | Eltorai, A.E., Choi, A.R. and Eltorai, A.S. | Respiratory Care | 2019 | 64 | 3 | 328-336 | Excluded | Study design | | Toxicity classification of e-cigarette flavouring compounds based on European Union regulation: Analysis of findings from a recent study | Farsalinos, K. and
Lagoumintzis, G. | Harm Reduction
Journal | 2019 | 16 | - | - | Excluded | Wrong
outcome | | Culprit or correlate? An application of the Bradford Hill criteria to Vitamin E acetate | Feldman, R., Meiman, J.,
Stanton, M. and
Gummin, D. D. | Archives of
Toxicology | 2020 | 94 | 6 | 2249-2254 | Excluded | Study design | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |--|--|---|-------------------|--------|-------|-----------|------------------------|---------------------| | Cancer and non-cancer risk concerns
from metals in electronic cigarette
liquids and aerosols | Fowles, J., Barreau, T. and
Wu, N. | International
Journal of
Environmental
Research and
Public Health | 2020 | 17 | 6 | - | Excluded | Study design | | What are the respiratory effects of e-cigarettes? | Gotts, J. E. and Jordt, S. E.
and McConnell, R. and
Tarran, R. | ВМЈ | 2019 | 366 | - | - | Excluded | Study design | | Developmental toxicity of e-cigarette aerosols | Greene, R. M. and
Pisano, M. M. | Birth Defects
Research | 2019 | 111 | 17 | 1294-1301 | Excluded | Study design | | Health Hazards and Complications
Associated with Electronic
Cigarettes: A Review | Gülşen A, Uslu B. | Turk Toraks
Dergisi / Turkish
Thoracic Journal | 2020 | 21 | 3 | 201-208 | Excluded | Study design | | Vaping: Anesthesia
Considerations for Patients
Using Electronic Cigarettes | Hobson, A | AANA Journal | 2020 | 88 | 1 | 27-34 | Excluded | Study design | | Low-temperature (<200 °C)
degradation of electronic nicotine
delivery system liquids generates
toxic aldehydes | Jaegers, N.R., Hu, W.,
Weber, T.J. and Hu, J.Z. | Scientific reports | 2021 | 11 | 1 | 7800 | Excluded | Wrong
outcome | | What is new in electronic-cigarettes research? | Jenssen, B.P. and
Wilson, K.M. | Current Opinion in Pediatrics | 2019 | 31 | 2 | 262-266 | Excluded | Study design | | Current Perspectives on
Characteristics, Compositions,
and Toxicological Effects of
E-Cigarettes Containing Tobacco
and Menthol/Mint Flavors | Kaur, G., Gaurav, A., Lamb, T.,
Perkins, M., Muthumalage, T.
and Rahman, I | Frontiers in
Physiology | 2020 | 11 | - | - | Excluded | Study design | | The Cardiovascular Effects of Electronic Cigarettes | Khadka, S., Awasthi, M.,
Lamichhane, R.R., Ojha, C.,
Mamudu, H.M., Lavie, C.J.,
Daggubati, R. and Paul, T.K | Current
Cardiology
Reports | 2021 | 23 | 5 | 44378 | Excluded | Study design | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |---|--|---|-------------------|--------|-------|-----------|------------------------|---------------------| | A Brief Overview of the National
Outbreak of e-Cigarette, or Vaping,
Product Use-Associated Lung Injury
and the Primary Causes | Kiernan, E., Click, E.S.,
Melstrom, P., Evans, M.E.,
Layer, M.R., Weissman, D.N.,
Reagan-Steiner, S., Wiltz, J.L.,
Hocevar, S., Goodman, A.B.
and Twentyman, E. | CHEST | 2021 | 159 | 1 | 426-431 | Excluded | Study design | | Biological Toxicity of the
Compositions in Electronic-Cigarette
on Cardiovascular System | Lai, L. and Qiu, H. | Journal of
Cardiovascular
Translational
Research | 2021 | 14 | 2 | 371-376 | Excluded | Study design | | Electronic nicotine delivery systems
(ENDS): not still ready to put on END | Lavacchi, D., Roviello, G.
and Rodriquenz, M.G. | Journal of
Thoracic Disease | 2020 | 12 | 7 | 3857 | Excluded | Study design | | Are electronic cigarettes a healthier alternative to conventional tobacco smoking? | Lohler, J. and Wollenberg, B. | European
Archives of
Oto-Rhino-
Laryngology | 2019 | 276 | 1 | 17-25 | Excluded | Study design | | Dynamic Imaging and Characterization of Volatile Aerosols in E-Cigarette Emissions Using Deep Learning-Based Holographic Microscopy | Luo, Y., Wu, Y., Li, L., Guo, Y.,
Çetintaş, E., Zhu, Y. and
Ozcan, A. | ACS sensors | 2021 | - | - | - | Excluded | Wrong
outcome | | An updated overview of e-cigarette impact on human health | Marques, P., Piqueras, L.,
and Sanz, M.J. | Respiratory
Research | 2021 | 22 | 1 | 41640 | Excluded | Study design | | Promotion of a Protease-Antiprotease
Imbalance in the Airways through
Chronic Vaping | Martin, S.L. and Reihill, J.A. | American Journal
of Respiratory
& Critical Care
Medicine | 2019 | - | - | 1337-1339 | Excluded | Study design | | Electronic cigarettes: Modern instruments for toxic lung delivery and posing risk for the development of chronic disease | McAlinden, K.D., Lu, W.,
Eapen, M.S. and Sohal, S.S. | International
Journal of
Biochemistry
and Cell Biology | 2021 | 137 | - | - | Excluded | Study design | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |---|--|---|-------------------|--------|-------|---------------|------------------------|---------------------| | There can be smoke without fire: Warranted caution in promoting electronic cigarettes and heat not burn devices as a safer alternative to cigarette smoking | McAlinden, K.D., Sohal, S.S.
and Sharma, P. | ERJ Open
Research | 2019 | 5 | 3 | - | Excluded | Study design | | Recent updates on biomarkers of exposure and systemic toxicity in e-cigarette users and EVALI | McDonough, S.R., Rahman, I., and Sundar, I. K. | American Journal
of Physiology
- Lung Cellular
and Molecular
Physiology | 2021 | 320 | 5 | L661-L679 | Excluded | Study design | | PBPK modeling characterization of potential acute impairment effects from inhalation of ethanol during e-cigarette use | More, S.L., Thornton, S.A.,
Maskrey, J.R., Sharma, A.,
de Gandiaga, E., Cheng, T.J.,
Fung, E.S., Bernal, A.J. and
Madl, A.K. | Inhalation
Toxicology | 2020 | 32 | 1 | 14-23 | Excluded | Study design | | Effects of tobacco cigarettes,
e-cigarettes, and waterpipe
smoking on endothelial function
and clinical outcomes | Münzel, T., Hahad, O.,
Kuntic, M., Keaney Jr, J.F.,
Deanfield, J.E. and Daiber, A | European Heart
Journal | 2020 | 41 | 41 | 4057-
4070 | Excluded | Study design | | Does 'Dry Hit' vaping of vitamin
E acetate contribute to EVALI?
Simulating toxic ketene formation
during e-cigarette use | Narimani, M. and da Silva, G. | PLoS ONE | 2020 | 15 | 9 | - | Excluded | Study design | | E-cigarettes induce toxicity
comparable to tobacco cigarettes
in airway epithelium from patients
with COPD | Omaiye, E.E., Luo, W.,
McWhirter, K.J., Pankow, J.F.
and Talbot, P | Chemical
Research in
Toxicology | 2021 | 33 | 12 | 2972-2987 | Excluded | Wrong
outcome | | A review of toxic effects of electronic cigarettes/vaping in adolescents and young adults | Overbeek, D.L., Kass, A.P.,
Chiel, L.E., Boyer, E.W. and
Casey, A.M. | Critical Reviews
in Toxicology | 2020 | 50 | 6 | 531-538 | Excluded | Study design | | Main and side stream effects of electronic cigarettes | Papaefstathiou, E.,
Stylianou, M., and Agapiou, A. | Journal of
Environmental
Management | 2019 | 238 | - | 43009 |
Excluded | Study design | Table 4 continued | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |---|--|---|-------------------|--------|-------|-----------|------------------------|---------------------| | Toxic Metal-Containing Particles in Aerosols from Pod-Type Electronic Cigarettes | Pappas, R.S.,
Gray, N., Halstead, M.,
Valentin-Blasini, L.
and Watson, C. | Journal of
analytical
toxicology | 2021 | 45 | 4 | 337-347 | Excluded | Wrong
outcome | | Vaping Cardiovascular Health Risks:
an Updated Umbrella Review | Peruzzi, M., Biondi-Zoccai, G.,
Carnevale, R., Cavarretta, E.,
Frati, G. and Versaci, F. | Current
Emergency and
Hospital Medicine
Reports | 2020 | 8 | 3 | 103-109 | Excluded | Study design | | Neurotoxicity of e-cigarettes | Ruszkiewicz, J. A., Zhang, Z.,
Goncalves, F. M., Tizabi, Y.,
Zelikoff, J. T. and Aschner, M. | Food and
Chemical
Toxicology | 2020 | 138 | - | - | Excluded | Study design | | Impact of Nicotine Replacement and
Electronic Nicotine Delivery Systems
on Fetal Brain Development | Sailer, S., Sebastiani, G.,
Andreu-Férnández, V.
and García-Algar, O | International journal of environmental research and public health | 2019 | 16 | 24 | 5113 | Excluded | Study design | | Flavor-Toxicant Correlation in
E-cigarettes: A Meta-Analysis | Salam, S., Saliba, N.A.,
Shihadeh, A., Eissenberg, T.
and El-Hellani, A. | Chemical
Research in
Toxicology | 2020 | 33 | 12 | 2932-2938 | Excluded | Wrong
outcome | | Investigating E-Cigarette Particle
Emissions and Human Airway
Depositions under Various
E-Cigarette-Use Conditions | Son, Y., Mainelis, G.,
Delnevo, C., Wackowski, O.A.,
Schwander, S. and Meng, Q. | Chemical
Research in
Toxicology | 2020 | 33 | 2 | 343-352 | Excluded | Wrong
outcome | | The use of Genomic Allergen Rapid
Detection (GARD) assays to predict
the respiratory and skin sensitising
potential of e-liquids | Stevenson, M., Czekala, L.,
Simms, L., Tschierske, N.,
Larne, O. and Walele, T. | Regulatory
Toxicology and
Pharmacology | 2019 | 103 | - | 158-165 | Excluded | Study design | | Review of data on chemical content in an aerosol resulting from heating a tobacco or a solution used in e-cigarettes and in the smoke generated from the reference cigarettes | Szparaga, M., Swiercz, R. and Stepnik, M. | Toxicology
Mechanisms
and Methods | 2021 | 31 | 5 | 323-333 | Excluded | Study design | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |--|--|---|-------------------|--------|-------|---------|------------------------|---------------------| | Characteristics and toxicant emissions of JUUL electronic cigarettes | Talih, S., Salman, R.,
El-Hage, R., Karam, E.,
Karaoghlanian, N.,
El-Hellani, A., Saliba, N.
and Shihadeh, A. | Tobacco control | 2019 | 28 | 6 | 678-680 | Excluded | Wrong
outcome | | Electrical features, liquid
composition and toxicant emissions
from 'pod-mod'-like disposable
electronic cigarettes | Talih, S., Salman, R.,
Soule, E., El-Hage, R.,
Karam, E., Karaoghlanian, N.,
El-Hellani, A., Saliba, N.
and Shihadeh, A. | Tobacco control. | 2021 | 12 | - | - | Excluded | Wrong
outcome | | Electronic cigarettes: where to from here? | Theron, A.J., Feldman, C.,
Richards, G.A., Tintinger, G.R.
and Anderson, R. | Journal of
Thoracic Disease | 2019 | 11 | 12 | 5572 | Excluded | Study design | | Vaping and Cardiovascular Health:
the Case for Health Policy Action | Verhaegen, A. and
Van Gaal, L. | Current
Cardiovascular
Risk Reports | 2019 | 13 | 12 | 44501 | Excluded | Study design | | A Public Health Crisis: Electronic
Cigarettes, Vape, and JUUL | Walley, Susan C.,
Wilson, K.M., Winickoff, J.P.
and Groner, J. | Pediatrics | 2019 | 143 | 6 | - | Excluded | Study design | | Toxicity assessment of electronic cigarettes | Wang, G., Liu, W. and
Song, W. | Inhalation
Toxicology | 2019 | 31 | 7 | 259-273 | Excluded | Study design | | Electronic nicotine delivery system design and aerosol toxicants: A systematic review | Ward, A.M., Yaman, R. and Ebbert, J. O. | PLoS ONE | 2020 | 15 | 6 | - | Excluded | Wrong
outcome | | Risk assessment of inhaled diacetyl
from electronic cigarette use
among teens and adults | White, A.V., Wambui, D.W. and Pokhrel, L. R. | Science of the
Total Environment | 2021 | 772 | - | - | Excluded | Study design | | Toxicological assessment of electronic cigarette vaping: an emerging threat to force health, readiness and resilience in the U.S. Army | Williams, M.A., Reddy, G.,
Quinn, M.J. and
Millikan Bell, A. | Drug and
Chemical
Toxicology | 2021 | - | - | 13516 | Excluded | Study design | | Title | Author(s) | Journal | Year
Published | Volume | Issue | Pages | Include
(Yes or No) | Exclusion reason(s) | |--|--|--|-------------------|--------|-------|---------------|------------------------|---------------------| | EVALI and the Pulmonary Toxicity of
Electronic Cigarettes: A Review | Winnicka, L. and
Shenoy, M.A. | JGIM: Journal of
General Internal
Medicine | 2020 | 35 | 7 | 2130-2135 | Excluded | Study design | | A narrative review evaluating the safety and efficacy of e-cigarettes as a newly marketed smoking cessation tool | Worku, D. and Worku, E. | SAGE Open
Medicine | 2019 | 7 | - | - | Excluded | Study design | | Potential for release of pulmonary
toxic ketene from vaping pyrolysis
of Vitamin E acetate | Wu, D. and O'Shea, D. F. | Proceedings
of the National
Academy of
Sciences of the
United States of
America | 2020 | 117 | 12 | 6349-
6355 | Excluded | Study design | | Are in Silico Approaches Applicable
As a First Step for the Prediction of
e-Liquid Toxicity in e-Cigarettes? | Zarini, D., Sangion, A.,
Ferri, E., Caruso, E.,
Zucchi, S., Orro, A. and
Papa, E | Chemical
Research in
Toxicology | 2020 | 33 | 9 | 2381-2389 | Excluded | Study design | | Influence of battery power setting on carbonyl emissions from electronic cigarettes | Zelinkova, Z. and Wenzl, T. | Tobacco Induced
Diseases | 2020 | 18 | - | - | Excluded | Wrong
outcome | | Influence of puffing conditions
on the carbonyl composition
of e-cigarette aerosols | Beauval N, Verrièle M,
Garat A, Fronval I,
Dusautoir R, Anthérieu S,
Garçon G, Lo-Guidice JM,
Allorge D, Locoge N. | International
Journal of
Hygiene &
Environmental
Health | 2019 | 222 | 1 | 136-146 | Excluded | Wrong
outcome | | Toxicological comparison of cigarette smoke and e-cigarette aerosol using a 3D in vitro human respiratory model | Czekala, L., Simms, L.,
Stevenson, M., Tschierske, N.,
Maione, A.G. and Walele, T | Regulatory
Toxicology and
Pharmacology | 2019 | 103 | - | 314-324 | Excluded | Study design | # **Appendix E: Table of characteristics for included studies** Table 5: Summary of included studies | Title | Authors | Journal | Year | Volume | Issue | Pages | Study design | Outcome(s)
of interest | Study PECO question | |--|--|--|------|--------|-------|---------|--------------------------------|--|--| | Tobacco-use behavior
and toxicant exposure
among current dual
users of electronic
cigarettes and
tobacco cigarettes | Cobb, Caroline O. and
Lester, Rebecca C.
and Rudy, Alyssa K.
and Hoetger, Cosima
and Scott, Megan and
Austin, Makeda and
Montpetit, Alison and
Lipato, Thokozeni
and Graham, Am
and a L. and Barnes,
Andrew J. and
Eissenberg, Thomas | Experimental
and Clinical
Psychopharmacology | 2021 | - | - | - | Clinical study | General toxicity | Population: e-cigarette and cigarette users Exposure: e-cigarettes; cigarettes Comparator: e-cigarette exposure vs cigarette exposure vs dual exposure vs no exposure Modifying factors: n/a | | Biomarkers of Toxicant Exposure and Inflammation Among Women of Reproductive Age Who Use Electronic or Conventional Cigarettes | Perez, M.F.,
Mead, E.L.,
Atuegwu, N.C.,
Mortensen, E.M.,
Goniewicz, M.
and Oncken, C | Journal of
Women's Health
 2021 | 30 | 4 | 539-550 | Cross-sectional study | Changes to levels
of tobacco-related
biomarkers when
switching to
e-cigarettes | Population: women of reproductive age that use e-cigarettes or traditional cigarettes Exposure: e-cigarettes; cigarettes Comparator: e-cigarette exposure vs traditional cigarette exposure vs no exposure Modifying factors: n/a | | E-cigarette liquid
provokes significant
embryotoxicity and
inhibits angiogenesis | Ashour, A. A. and
Alhussain, H. and
Rashid, U. B. and
Abughazzah, L. and
Gupta, I. and Malki, A.
and Vranic, S. and
Al Moustafa, A. E. | Toxics | 2020 | 8 | 2 | 38 | Experimental
(animal study) | Embryotoxicity;
Angiogenesis | Population: chicken embryo Exposure: e-cigarette liquid ("Virginia tobacco") Comparator: exposure vs no exposure Modifying factors: day of exposure during embryogensis | | Title | Authors | Journal | Year | Volume | Issue | Pages | Study design | Outcome(s)
of interest | Study PECO question | |--|---|--------------------------------------|------|--------|---|---------|--------------------------------|---------------------------|---| | Systemic toxicity evaluation of novel | Cai, H. and Xu, Y.
and Tang, S. and | Toxicology in Vitro | 2020 | 62 | - | - | Experimental (animal study) | General toxicity | Population:
Caenorhabditis elegans | | tobacco products
in Caenorhabditis
elegans | Yang, X. and Zou, Y.
and Wang, X. and
Mo. L. and Wu, B. | | | | | | | | Exposure: e-liquids;
e-aerosol | | cicgans | gans Mo, L. and Wu, B. and Liang, Z. and Li, Y. and Wei, X. and Ao, Q. and Meng, L. and Zhang, N. and Chen, M. and Lan, C. and Li, X. and Lu, C. | | | | Comparator: exposure vs no exposure; e-liquid vs e-aerosol vs mint flovour snus vs black tea flavour snus | | | | | | | 2 2., | | | | | | | | Modifying factors: concentration | | Neuroinflammatory
and Behavioral
Outcomes Measured
in Adult Offspring
of Mice Exposed
Prenatally to
E-Cigarette Aerosols | Church, Jamie S. and
Chace-Donahue,
Fiona and Blum,
Jason L. and Ratner,
Jill R. and Zelikoff,
Judith T. and
Schwartzer, Jared J. | Environmental
Health Perspectives | 2020 | 128 | 4 | - | Experimental
(animal study) | Developmental toxicity | Population: pregnant mice Exposure: filtered air, propylene glycol and vegetable glycerol (50:50 PG/VG vehicle), or to PG/ VG with 16mg/mL nicotine. Comparator: exposure vs no exposure Modifying factors: n/a | | The Customizable
E-cigarette
Resistance Influences
Toxicological
Outcomes: | Cirillo, S. and
Vivarelli, F. and
Turrini, E. and
Fimognari, C. and
Burattini, S. and | Toxicological
Sciences | 2019 | 172 | 1 | 132-145 | Experimental
(animal study) | General toxicity | Population: Sprague Dawley rats Exposure: e-aerosol Comparator: | | Lung degeneration,
inflammation,
and oxidative
stress-induced
in a rat model | Falcieri, E. and
Rocchi, M. B. L. and
Cardenia, V. and
Rodriguez-Estrada,
M. T. and Paolini, M.
and Canistro, D. | | | | | | | | exposure vs no exposure Modifying factors: e-cigarette resistance | Table 5 continued | Title | Authors | Journal | Year | Volume | Issue | Pages | Study design | Outcome(s)
of interest | Study PECO question | |---|---|--|------|--------|-------|---------------|--------------------------------|---------------------------|---| | Evaluation of toxicity
of aerosols from
flavored e-liquids in
Sprague-Dawley rats
in a 90-day OECD
inhalation study,
complemented by
transcriptomics
analysis | Ho, J., Sciuscio, D., Kogel, U., Titz, B., Leroy, P., Vuillaume, G., Talikka, M., Martin, E., Pospisil, P., Lebrun, S., Xia, W., Lee, T., Chng, Y. X., Phillips, B. W., Veljkovic, E., Guedj, E., Xiang, Y., Ivanov, N.V., Peitsch, M.C., Hoeng, J., and Vanscheeuwijck, P. | Archives of
Toxicology | 2020 | 94 | 6 | 2179-
2206 | Experimental
(animal study) | General toxicity | Population: Sprague-Dawley rats Exposure: aeorosol from flavoured e-liquids Comparator: exposure vs no exposure Modifying factors: n/a | | Impact of maternal
e-cigarette vapor
exposure on renal
health in the offspring | Li, G., Chan, Y.L.,
Nguyen, L.T., Mak, C.,
Zaky, A., Anwer, A.G.,
Shi, Y., Nguyen, T.,
Pollock, C.A.,
Oliver, B.G. and
Saad, S. | Annals of the
New York Academy
of Sciences | 2019 | - | - | - | Experimental
(animal study) | Developmental toxicity | Population: female Balb/c mice Exposure: e-cigarette vapour; tobacco cigarette smoke Comparator: e-cigarette vapour exposure vs tobacco cigarette smoke exposure vs no exposure Modifying factors: n/a | | Replacing smoking
with vaping during
pregnancy: Impacts
on metabolic health
in mice | Li, G., Chan, Y.L.,
Wang, B., Saad, S.,
Oliver, B.G. and
Chen, H. | Reproductive
Toxicology | 2020 | 96 | - | 293-299 | Experimental
(animal study) | Developmental toxicity | Population: female Balb/c mice Exposure: e-cigarette vapour; tobacco cigarette smoke Comparator: e-cigarette vapour exposure vs tobacco cigarette smoke exposure vs no exposure Modifying factors: n/a | | Title | Authors | Journal | Year | Volume | Issue | Pages | Study design | Outcome(s)
of interest | Study PECO question | |---|--|--------------------------------------|------|--------|-------|---------------|--------------------------------|---------------------------|---| | Electronic cigarettes
disrupt lung lipid
homeostasis and
innate immunity
independent
of nicotine | Matthew C. Madison, Cameron T. Landers, Bon-Hee Gu, Cheng-Yen Chang, Hui-Ying Tung, Ran You, Monica J. Hong, Nima Baghaei, Li-Zhen Song, Paul Porter, Nagireddy Putluri, Ramiro Salas, Brian E. Gilbert, Ilya Levental, Matthew J. Campen, David B. Corry, and Farrah Kheradmand | Journal of Clinical
Investigation | 2019 | 129 | 10 | 4290-
4304 | Experimental (animal study) | Cytotoxicity | Population: alveolar macrophages and epithelial cells; mice Exposure: ENDS Comparator: exposure vs no exposure Modifying factors: presence of nicotine | | Neurological Effects
in the Offspring
after Switching from
Tobacco Cigarettes
to E-Cigarettes
during Pregnancy
in a Mouse Model | Nguyen, T.,
Li, G.E., Chen, H.,
Cranfield, C.G.,
McGrath, K.C.
and Gorrie, C.A. | Toxicological
Sciences | 2019 | 172 | 1 | 191-200 | Experimental
(animal study) | Developmental toxicity | Population: female Balb/c mice Exposure: e-cigarette vapour; tobacco cigarette smoke Comparator: e-cigarette vapour exposure vs tobacco cigarette smoke exposure vs no exposure Modifying factors: n/a | | The oxidative
stress induced by
the vapours of
electronic-hookah
on mice liver tissues | Nima, R. S. and
Aziz, D. Z. | Systematic Reviews
in Pharmacy | 2020 | 11 | 9 | 420-423 | Experimental
(animal study) | Cytotoxicity | Population: mice Exposure: e-hookah Comparator: exposure vs no exposure Modifying factors: | Table 5 continued | Title | Authors | Journal | Year | Volume | Issue | Pages | Study design | Outcome(s)
of interest | Study PECO question | |---|---|--------------------------------------|------|--------|-------|---------------|--------------------------------|---------------------------|---| | Short-term E-cigarette
toxicity effects
on brain cognitive
memory functions
and inflammatory
responses in mice | Prasedya,
E.S.,
Ambana, Y.,
Martyasari, N.W.R.
and Aprizal, Y.M. | Toxicological
Research | 2020 | 36 | 3 | 267-273 | Experimental
(animal study) | Neurotoxicity | Population: BALB/c mice Exposure: e-cigarette vapour; cigarette smoke Comparator: e-cigarette vapour exposure vs cigarette smoke exposure vs no exposure Modifying factors: n/a | | Less burn, more fat:
electronic cigarettes
and pulmonary lipid
homeostasis | Singanayagam,
Aran and Snelgrove,
Robert J. | Journal of Clinical
Investigation | 2019 | 129 | 10 | 4077-
4079 | Experimental
(animal study) | Pulmonary
toxicity | Population: mice Exposure: chronic ENDS exposure Comparator: exposure vs no exposure Modifying factors: n/a | | A 6-month systems toxicology inhalation study in Apoe-/- mice demonstrates reduced cardiovascular effects of E-vapor aerosols compared with cigarette smoke | Szostak, J., Wong, E.T., Titz, B., Lee, T., Wong, S.K., Low, T., Lee, K.M., Zhang, J., Kumar, A., Schlage, W.K., Guedj, E., Phillips, B., Leroy, P., Buettner, A., Xiang, Y., Martin, F., Sewer, A., Kuczaj, A., Ivanov, N.V., Luettich, K., Vanscheeuwijck, P., Peitsch, M. C. and Hoeng, J. | American journal of physiology | 2021 | 318 | 3 | H604-
H631 | Experimental
(animal study) | Cardiotoxicity | Population: never-smokers (adults) Exposure: e-cigs containing only 50% propylene glycol (PG) and 50% vegetable glycerine Comparator: exposure vs no exposure Modifying factors: n/a | Table 5 continued | Title | Authors | Journal | Year | Volume | Issue | Pages | Study design | Outcome(s)
of interest | Study PECO question | |--|---|--|------|--------|-------|---------------|--|----------------------------|--| | A 6-month inhalation toxicology study in Apoe-/- mice demonstrates substantially lower effects of e-vapor aerosol compared with cigarette smoke in the respiratory tract | Wong, E.T., Szostak, J., Titz, B., Lee, T., Wong, S.K., Lavrynenko, O., Merg, C., Corciulo, M., Simicevic, J., Auberson, M., Peric, Dulize, R.,d Bornand, D., Loh, G.J., Lee, K.M., Zhang, J., Miller, J.H., Schlage, W.K., Guedj, E., Schneider, T., Phillips, B., Leroy, P., Choukrallah, M.A., Sierro, N., Buettner, A., Xiang, Y., Kuczaj, A., Ivanov, N.V., Luettich, K., Vanscheeuwijck, P., Peitsch, M.C., and Hoeng, J. | Archives of
Toxicology | 2021 | 95 | 5 | 1805-1829 | Experimental (animal study) | Cardiorespiratory toxicity | Population: Apoe-/- mice Exposure: cigarette smoke; e-vapour aerosols containing nicotine and flavour Comparator: cogarette smoke exposure vs e-vapour exposure vs no exposure Modifying factors: n/a | | In vitro and in vivo
cardiac toxicity of
flavored electronic
nicotine delivery
systems | Abouassali, O. and Chang, M. and Chidipi, B. and Martinez, J. L. and Reiser, M. and Kanithi, M. and Soni, R. and McDonald, T. V. and Herweg, B. and Saiz, J. and Calcul, L. and Noujaim, S. F. | American Journal
of Physiology -
Heart and Circulatory
Physiology | 2021 | 320 | 1 | H133-
H143 | Experimental
(animal study)
Experimental
(cell study) | Cardiotoxicity | Population: mice; human induced pluripotent stem cell-derived cardiomyocytes Exposure: vanillin and cinnamaldehyde flavoured ENDS Comparator: exposure vs no expsoure Modifying factors: n/a | Table 5 continued | Title | Authors | Journal | Year | Volume | Issue | Pages | Study design | Outcome(s)
of interest | Study PECO question | |--|---|--|------|--------|-------|---------------|--|---------------------------|---| | In vivo assessment of the toxicity of electronic cigarettes to zebrafish (Danio rerio) embryos, following gestational exposure, in terms of mortality, developmental toxicity, and hair cell damage: Toxicity of E-cigs to zebrafish embryos | Chang, Y. S. and
Park, S. M. and
Rah, Y. C. and
Han, E. J. and
Koun, S. I. and
Chang, J. and Choi, J. | Human & Experimental Toxicology | 2021 | 40 | 1 | 148-157 | Experimental
(animal study);
experimental
(cell study) | Developmental toxicity | Population: zebrafish embryos Exposure: e-liquids Comparator: exposure vs no exposure Modifying factors: concentration | | Short-term e-cigarette vapour exposure causes vascular oxidative stress and dysfunction: Evidence for a close connection to brain damage and a key role of the phagocytic NADPH oxidase (NOX-2) | Kuntic, M., Oelze, M., Steven, S., Kröller-Schön, S., Stamm,P.,Kalinovic,S., Frenis, K., Vujacic-Mirski, K., Bayo Jimenez, M.T., Kvandova, M. and Filippou, K., Al Zuabi, A., Bruckl, V., Hahad, O., Daub, S., Varveri, F., Gori, T., Huesmann, R., Hoffmann, T., Schmidt, F.P., Keaney, J.F., Daiber, A., and Munzel, T. | European Heart
Journal | 2020 | 41 | 26 | 2472-
2483 | Experimental (animal study); experimental (cell study) | Pulmonary
function | Population: chronic smokers; mice Exposure: e-cigarette vapour Comparator: exposure vs no exposure Modifying factors: n/a | | Dose-dependent
pulmonary toxicity
of aerosolized
Vitamin E acetate | Matsumoto, S.,
Fang, X., Traber, M.G.,
Jones, K.D.,
Langelier, C.,
Hayakawa Serpa, P.,
Calfee, C.S.,
Matthay, M.A.
and Gotts, J.E | American Journal of
Respiratory Cell and
Molecular Biology | 2020 | 63 | 6 | 748-757 | Experimental
(animals study);
experimental
(cell study) | Pulmonary
toxicity | Population: adult mice; primary human alveolar epithelial type II (AT II) cells Exposure: vitamin E acetate aerosol Comparator: exposure vs no exposure Modifying factors: n/a | Table 5 continued | Title | Authors | Journal | Year | Volume | Issue | Pages | Study design | Outcome(s)
of interest | Study PECO question | |---|---|------------------------------------|------|--------|-------|-----------|---|--|--| | Formation of
flavorant-propylene
Glycol Adducts With
Novel Toxicological
Properties in
Chemically Unstable
E-Cigarette Liquids | Erythropel, H.C.,
Jabba, S.V.,
DeWinter, T.M.,
Mendizabal, M.,
Anastas, P.T.,
Jordt, S.E. and
Zimmerman, J.B. | Nicotine &
Tobacco Research | 2019 | 21 | 9 | 1248-1258 | Experimental
(biochemical
study);
Experimental
(cell study) | Toxicant identification & quantification | Population: Human
embryonic kidney 293 cells
Exposure: e-liquids
Comparator:
exposure vs no exposure
Modifying factors: n/a | | High-Nicotine Electronic Cigarette Products: Toxicity of JUUL Fluids and Aerosols Correlates Strongly with Nicotine and Some Flavor Chemical Concentrations | Omaiye, E.E.,
McWhirter, K.J.,
Luo, W., Pankow, J.F.
and Talbot, P. | Chemical Research
in Toxicology | 2019 | 32 | 6 | 1058-1069 | Experimental
(cell study) | Cytotoxicity | Population: BEAS-2B lung epithelial cells Exposure: currently marketed prefilled JUUL e-cigarette cartridges ("pods") Comparator: non-JUUL pods Modifying factors: different flavour variants | | Cytotoxic and genotoxic effects of e-liquids and their potential associations with nicotine, menthol and phthalate esters | Al-Saleh, I. and
Elkhatib, R. and
Al-Rajoudi, T. and
Al-Qudaihi, G. and
Manogarannogaran, P.
and Eltabache, C.
and Alotaibi, A. and
Mummer, A. B. and
Almugbel, S. | Chemosphere | 2020 | 249 | - | 126-153 | Experimental (cell study) | Genotoxicity;
Cytotoxicity | Population: human lymphoblastoid TK6 and Chinese hamster ovary (CHO) cells Exposure: 33 e-liquids Comparator: exposure vs no expsoure Modifying factors: n/a | | Identification of
flavouring substances
of genotoxic
concern present
in
e-cigarette refills | Barhdadi, S. and
Mertens, B. and
Van Bossuyt, M. and
Van De Maele, J.
and Anthonissen, R.
and Canfyn, M.
and Courselle, P.
and Rogiers, V.
and Deconinck, E.
and Vanhaecke, T. | Food and Chemical
Toxicology | 2021 | 147 | - | - | Experimental
(cell study) | Genotoxicity | Population: in vitro assays Exposure: 129 e-liquids Comparator: exposure vs no exposure Modifying factors: n/a | | Title | Authors | Journal | Year | Volume | Issue | Pages | Study design | Outcome(s)
of interest | Study PECO question | |---|--|---------------------------------|------|--------|-------|---------|---------------------------|---------------------------|--| | Electronic cigarette extract induced toxic | Basma, H.,
Tatineni, S., Dhar, K., | BMC Cardiovascular
Disorders | 2020 | 20 | 1 | 357 | Experimental (cell study) | Cardiotoxicity | Population:
cardiomyocytes | | effect in iPS-derived cardiomyocytes | Qiu, F., Rennard, S. and Lowes, B.D. | | | | | | | | Exposure: e-cigarette extract | | | | | | | | | | | Comparator: conventional cigarette smoke extract | | | | | | | | | | | Modifying factors: n/a | | Reactive Oxygen
Species, Mitochondrial | Correia-Álvarez, E.,
Keating, J.E., Glish, G., | Nicotine & Tobacco
Research | 2020 | 22 | Supp1 | S4-S13 | Experimental (cell study) | Cytotoxicity | Population: human cell line
HEK293T | | Membrane Potential,
and Cellular
Membrane Potential
Are Predictors of
E-Liquid Induced
Cellular Toxicity | Tarran, R. and
Sassano, M.F | | | | | | | | Exposure: e-liquids,
vanillin, benzyl alcohol,
acetoin, cinnamaldehyde,
and methyl-
cyclopentenolone | | - | | | | | | | | | Comparator: exposure vs no exposure | | | | | | | | | | | Modifying factors: n/a | | Refill liquids for electronic cigarettes | De Martin, S.,
Gabbia, D., Bogialli, | Toxicology Reports | 2021 | 8 | - | 456-462 | Experimental (cell study) | Cytotoxicity | Population: human endothelial cells | | display peculiar
toxicity on human
endothelial cells | S., Biasioli, F.,
Boschetti, A., Gstir, R.,
Rainer, D. and | | | | | | | | Exposure: e-cigarette refill liquids | | | Cappellin, L. | | | | | | | | Comparator: different refill liquid products | | | | | | | | | | | Modifying factors: n/a | | Novel instrument to generate | Delaval, M., Egli,
D., Schüpfer, P., | Journal of
Aerosol Science | 2019 | 129 | - | 40-52 | Experimental (cell study) | Cytotoxicity | Population: human bronchial endothelial cells | | representative
e-cigarette vapors | Benarafa, C., Geiser,
M. and Burtscher, H. | | | | | | | | Exposure: e-aerosols | | for physicochemical particle characterization | , | | | | | | | | Comparator: exposure vs no exposure | | and in-vitro toxicity | | | | | | | | | Modifying factors: puffing regimen | | Title | Authors | Journal | Year | Volume | Issue | Pages | Study design | Outcome(s)
of interest | Study PECO question | |---|---|------------------------------------|------|---|---------|-----------|---------------------------|--|--| | Comparison of the chemical composition of aerosols from heated tobacco products, electronic | Dusautoir, R.,
Zarcone, G.,
Verriele, M.,
Garçon, G., Fronval, I.,
Beauval, N., | Journal of Hazardous
Materials | 2021 | 401 | (11113) | | | Toxicant identification & quantification | Population: human
bronchial epithelial
BEAS-2B cells
Exposure: e-cigarettes | | cigarettes and
tobacco cigarettes
and their toxic | ettes Locoge, N., Lo-Guidice, J.M. | | | aerosols; tobacco cigarette
aerosols; heated tobacco
product aerosols | | | | | | | impacts on the human
bronchial epithelial
BEAS-2B cells | ' | | | | | | | | Comparator: e-cigarettes vs tobacco cigarettes vs heated tobacco products | | | | | | | | | | | Modifying factors: n/a | | In Vitro Toxicity
and Chemical
Characterization of | Escobar, Y.N.H.,
Nipp, G., Cui, T.,
Petters, S.S., | Chemical Research
in Toxicology | 2020 | 33 | 7 | 1677-1688 | Experimental (cell study) | Cytotoxicity | Population: human bronchial epithelial cells Exposure: propylene glycol | | Aerosol Derived from
Electronic Cigarette | Surratt, J.D.
and Jaspers, I. | | | | | | | | and glycerol | | Humectants Using a Newly Developed | and caspons, in | | | | | | | | Comparator: exposure vs no exposure | | Exposure System | | | | | | | | | Modifying factors: n/a | | Addressing
the challenges
of E-cigarette | Ganguly, K.,
Nordstrom, A.,
Thimraj, T. A., | Scientific reports | 2020 | 10 | - | - | Experimental (cell study) | Pulmonary
toxicity | Population: n/a; human
bronchial and alveolar lung
mucosa models | | safety profiling
by assessment
of pulmonary | Rahman, M.,
Ramstrom, M.,
Sompa, S. I., | | | | | | | | Exposure:
fruit flavoured e-liquids | | oxicological response Lir
n bronchial and Ko | Lin, E. Z., O'Brien, F.,
Koelmel, J.,
Ernstgard, L., | | | | | | | | Comparator: exposure vs no exposure | | models | Johanson, G.,
Pollitt, K. J. G.,
Palmberg, L. and
Upadhyay, S. | | | | | | | | Modifying factors: nicotine content; vaping regimen | | Title | Authors | Journal | Year | Volume | Issue | Pages | Study design | Outcome(s) of interest | Study PECO question | |---|--|-------------------------------|------|--------|-------|-----------|---------------------------|------------------------|---| | Effect of sub-chronic exposure to | Ghosh B,
Reyes-Caballero H, | BMC Pulmonary
Medicine | 2020 | 20 | 1 | 216 | Experimental (cell study) | Cytotoxicity | Population: human bronchial epithelial cells | | cigarette smoke,
electronic cigarette
and waterpipe on
human lung epithelial
barrier function | Akgün-Ölmez SG,
Nishida K, Chandrala L,
Smirnova L, Biswal S,
Sidhaye VK. | | | | | | | | Exposure: cigarette smoke; e-cigarette aerosol; tobacco waterpipe exposure | | | | | | | | | | | Comparator: cigarette smoke vs e-cigarette aerosol vs tobacco waterpipe exposure vs no exposure | | Comparison between | Go, Y. Y. and Mun, J. Y. | Scientific reports | 2020 | 10 | _ | _ | Experimental | Cytotoxicity | Modifying factors: n/a Population: human middle | | in vitro toxicities of tobacco- and menthol- | and Chae, S. W.
and Chang, J. and | | | | | | (cell study) | | ear epithelial cells | | flavored electronic | Song, J. J. | | | | | | | | Exposure: e-liquids | | cigarette liquids on
human middle ear | | | | | | | | | Comparator: exposure vs no exposure | | epithelial cells | | | | | | | | | Modifying factors:
different flavours (menthol
vs tobacco flavoured) | | In vitro and in silico genetic toxicity | Hung, P. H.,
Savidge, M., De, M., | Journal of Applied Toxicology | 2020 | 40 | 11 | 1566-1587 | Experimental (cell study) | Genotoxicity | Population:
human TK6 cells | | screening of flavor compounds and | Kang, J., Healy, S.M.,
and Valerio, L. G. | | | | | | | | Exposure: e-aerosols | | other ingredients in tobacco products with | 3.13 Valorio, E. 3. | | | | | | | | Comparator: exposure vs no exposure | | emphasis on ENDS | | | | | | | | | Modifying factors:
different flavoured e-cigs | Table 5 continued | Title | Authors | Journal | Year | Volume | Issue | Pages | Study design | Outcome(s)
of interest | Study PECO question | |--|---|----------------------------------|------|--------|-------|---------------|------------------------------|---------------------------|--| | A lower impact of an acute exposure to electronic cigarette aerosols than to cigarette smoke in human organotypic buccal and small airway cultures was demonstrated using systems toxicology assessment | Iskandar, A.R., Zanetti, F., Kondylis, A., Martin, F., Leroy, P., Majeed, S., Steiner, S., Xiang, Y., Torres, L.O., Trivedi, K., Guedj, E., Merg, C., Frentzel, S., Ivanov, N.V., Doshi, U. Lee, K.M., McKinney, W.J., Peitsch, M.C., Hoeng, J., and McKinney, W.J., Jr. | Internal & Emergency
Medicine | 2019 | 14 | 6 | 863-883 | Experimental
(cell study) | General toxicity | Population: human organotypic buccal and small airway cultures Exposure: e-cigarettes Comparator: exposure vs no exposure Modifying factors: n/a | | Application of a
multi-layer systems toxicology framework for in vitro assessment of the biological effects of Classic Tobacco e-liquid and its corresponding aerosol using an e-cigarette device with MESHTM technology | Iskandar, A.R., Zanetti, F., Marescotti, D., Titz, B., Sewer, A., Kondylis, A., Leroy, P., Belcastro, V., Torres, L.O., Acali, S. and Majeed, S., Steiner, S., Trivedi, K., Guedj, E., Merg, C., Schneider, T., Frentzel, S., Martin, F., Ivanov, N. V., Peitsch, M.C., and Hoeng, J. | Archives of
Toxicology | 2019 | 93 | 11 | 3229-
3247 | Experimental
(cell study) | Cytotoxicity | Population: bronchial epithelial cell cultures; human organotypic air-liquid interface buccal and small airway epithelial cultures Exposure: Classic Tobacco e-liquid; Base e-liquid Comparator: Classic Tobacco e-liquid exposure vs base e-liquid exposure Modifying factors: n/a | | Chemical Adducts of Reactive Flavor Aldehydes Formed in E-Cigarette Liquids Are Cytotoxic and Inhibit Mitochondrial Function in Respiratory Epithelial Cells | Jabba, S.V., Diaz, A.N.,
Erythropel, H.C.,
Zimmerman, J.B.
and Jordt, S.E. | Nicotine & Tobacco
Research | 2020 | 22 | Supp1 | S25-S34 | Experimental
(cell study) | Cytotoxicity | Population: bronchial (BEAS-2B) and alveolar (A549) epithelial cells Exposure: benzaldehyde, vanillin, ethyl vanillin, and their corresponding propylene glycol acetals Comparator: parent aldehydes vs their corresponding propylene glycol acetals Modifying factors: n/a | | Title | Authors | Journal | Year | Volume | Issue | Pages | Study design | Outcome(s)
of interest | Study PECO question | |--|---|------------------------------------|------|--------|-------|-----------|------------------------------|--|---| | Chemical and Toxicological Characterization of Vaping Emission Products from Commonly Used Vape Juice Diluents | Jiang, H., Ahmed, C.S., Martin, T.J., Canchola, A., Oswald, I.W., Garcia, J.A., Chen, J.Y., Koby, K.A., Buchanan, A.J., Zhao, Z. and Zhang, H | Chemical Research
in Toxicology | 2020 | 33 | 8 | 2157-2163 | Experimental
(cell study) | Toxicant identification & quantification; Cytotoxicity | Population: human airway epithelial cells Exposure: vaping emission products Comparator: exposure to emissions vs e-liquid constituents Modifying factors: n/a | | The flavoring and not the nicotine content is a decisive factor for the effects of refill liquids of electronic cigarette on the redox status of endothelial cells | Kerasioti, E.,
Veskoukis, A.S.,
Skaperda, Z.,
Zacharias, A.,
Poulas, K.,
Lazopoulos, G.
and Kouretas, D. | Toxicology Reports | 2020 | 7 | - | 1095-1102 | Experimental
(cell study) | Cytotoxicity | Population: human endothelial cells (EA.hy926 cell line) Exposure: three e-liquids with different flavors (tobacco, vanilla, apple/mint) Comparator: exposure vs no exposure Modifying factors: nicotine concentration | | E-cigarette aerosol
induced cytotoxicity,
DNA damages
and late apoptosis
in dynamically
exposed A549 cells | Khalil, C.,
Chahine, J.B.,
Haykal, T.,
Al Hageh, C., Rizk, S.
and Khnayzer, R.S. | Chemosphere | 2021 | 263 | - | - | Experimental
(cell study) | Cytotoxicity | Population: adenocarcinomic human alveolar basal epithelial cells Exposure: acute e-aerosol exposure (thirty puffs at 40 W of power and higher) Comparator: exposure vs no exposure Modifying factors: n/a | | Title | Authors | Journal | Year | Volume | Issue | Pages | Study design | Outcome(s)
of interest | Study PECO question | |---|---|----------------------------|------|--------|-------|-------|------------------------------|---------------------------|---| | E-Liquid Containing
a Mixture of Coconut,
Vanilla, and Cookie
Flavors Causes
Cellular Senescence
and Dysregulated
Repair in Pulmonary
Fibroblasts:
Implications on
Premature Aging | Lucas, J.H.,
Muthumalage, T.,
Wang, Q.,
Friedman, M.R.,
Friedman, A.E.
and Rahman, I. | Frontiers in
Physiology | 2020 | 11 | - | - | Experimental
(cell study) | Pulmonary
toxicity | Population: pulmonary fibroblasts Exposure: e-liquid containing a mixture of tobacco, coconut, vanilla, and cookie flavors Comparator: exposure vs no exposure Modifying factors: n/a | | Systems toxicology
assessment of a
representative
e-liquid formulation
using human
primary bronchial
epithelial cells | Diego Marescotti, Carole Mathis, Vincenzo Belcastro, Patrice Leroy, Stefano Acali, Florian Martin, Rémi Dulize, David Bornand, Dariusz Peric, Emmanuel Guedj, Laura Ortega Torres, Matteo Biasioli, Matthieu Fuhrimann, Estela Fernandes, Felix Frauendorfer, Ignacio Gonzalez Suarez, Davide Sciuscio, Nikolai V. Ivanov, Manuel C. Peitsch, Julia Hoeng | Toxicology Reports | 2020 | 7 | - | 67-80 | Experimental (cell study) | Cytotoxicity | Population: human bronchial epithelial cells Exposure: 28 flavouring substances commonly used in e-liquid formulations, dissolved individually or as a mixture in a base solution composed of propylene glycol, vegetable glycerin, and 0.6% nicotine Comparator: exposure to individual flavouring substantces vs mixed flavours Modifying factors: n/a | | Airway basal cell injury
after acute diacetyl
(2,3-butanedione)
vapor exposure | McGraw, M.D.,
Kim, S.Y., Reed, C.,
Hernady, E.,
Rahman, I.,
Mariani, T.J. and
Finkelstein, J.N. | Toxicology Letters | 2020 | 325 | - | 25-33 | Experimental
(cell study) | Cytotoxicity | Population: human bronchial epithelial cells Exposure: diacetyl vapour Comparator: exposure vs no exposure Modifying factors: n/a | | Title | Authors | Journal | Year | Volume | Issue | Pages | Study design | Outcome(s) of interest | Study PECO question | |--|--|------------------------------|------|--------|-------|-------|---------------------------|---------------------------|---| | Menthol in electronic cigarettes: | Nair, V., Tran, M.,
Behar, R.Z., | Toxicology
and Applied | 2020 | 407 | - | - | Experimental (cell study) | Cytotoxicity | Population: human bronchial epithelium | | A contributor to respiratory disease? | Zhai, S., Cui, X.,
Phandthong, R., | Pharmacology | | | | | | | Exposure: menthol | | | Wang, Y., Pan, S.,
Luo, W., Pankow, J.F. | | | | | | | | Comparator: exposure vs no exposure (pre/post) | | | and Volz, D.C | | | | | | | | Modifying factors: n/a | | Sub-ohm vaping increases the levels of carbonyls, is cytotoxic, | Noël, A., Hossain, E.,
Perveen, Z.,
Zaman, H., and | Respiratory Research | 2020 | 21 | 1 | 43831 | Experimental (cell study) | Cytotoxicity | Population: human
bronchial epithelial
cells (H292) | | and alters gene
expression in human
bronchial epithelial
cells exposed at the
air-liquid interface | Penn, A. L. | | | | | | | | Exposure: butter-flavoured or cinnamon-flavoured e-cig aerosols via third-generation e-cigarette device | | | | | | | | | | | Comparator: exposure
to butter-flovured
aerosols vs exposure
to cinnamon-flavoured
aerosol | | | | | | | | | | | Modifying factors: n/a | | Quantification of selected aroma | Noël, J.C., Rainer, D.,
Gstir, R., Rainer, M. | Biomedical
Chromatography | 2020 | 34 | 3 | - | Experimental (cell study) | Toxicant identification & | Population:
HUVEC/Tert2 cells | | compounds in e-cigarette products and toxicity evaluation | and Bonn, G. | | | | | | | quantification | Exposure: e-liquids and e-concentrates | | in HUVEC/Tert2 cells | | | | | | | | | Comparator: exposure vs no exposure | | | | | | | | | | | Modifying factors:
different flavours
of e-lquids and
e-concentrates | | Title | Authors | Journal | Year | Volume | Issue | Pages | Study design | Outcome(s)
of interest | Study PECO question | |--|---|---------------------|------|--------|-------|-------|------------------------------|---------------------------
--| | Comparative effects of parent and heated cinnamaldehyde on the function of human iPSC-derived cardiac myocytes | Nystoriak, M.A.,
Kilfoil, P.J.,
Lorkiewicz, P.K.,
Ramesh, B.,
Kuehl, P.J.,
McDonald, J.,
Bhatnagar, A.
and Conklin, D.J. | Toxicology in Vitro | 2019 | 61 | - | - | Experimental
(cell study) | Cardiotoxicity | Population: human induced pluripotent stem cell-derived cardiac myocytes Exposure: cinnamaldehyde Comparator: exposure vs no exposure Modifying factors: heating at low (200 ± 50 °C) and high temperatures (700 ± 50 °C) | | E-cigarettes induce
toxicity comparable to
tobacco cigarettes in
airway epithelium from
patients with COPD | O'Farrell, H.E.,
Brown, R., Brown, Z.,
Milijevic, B.,
Ristovski, Z.D.,
Bowman, R.V.,
Fong, K.M.,
Vaughan, A.
and Yang, I.A | Toxicology in Vitro | 2021 | 75 | - | - | Experimental (cell study) | Cytotoxicity | Population: bronchial epithelial cells (BECs) from patients with chronic obsrtuctive pulmonary disease Exposure: aerosols from a fourth-generation e-cigarette Comparator: exposure to e-aerosol vs cigarette smoker | | | | | 2010 | | | | | | Modifying factors: n/a | | Transcriptomic response of primary human airway | Park, H.R.,
O'Sullivan, M.,
Vallarino, J., | Scientific reports | 2019 | 9 | 1 | 1-Nov | Experimental (cell study) | Cytotoxicity | Population: human bronchial epithelial cells | | epithelial cells to
flavoring chemicals in | Shumyatcher, M.,
Himes, B.E., Park, J.A., | | | | | | | | Exposure: diacetyl; 2,3-pentanedione | | electronic cigarettes | Christiani, D.C.,
Allen, J. and Lu, Q. | | | | | | | | Comparator:
diacetyl exposure vs
2,3-pentanedione exposure | | | | | | | | | | | Modifying factors: n/a | | Title | Authors | Journal | Year | Volume | Issue | Pages | Study design | Outcome(s) of interest | Study PECO question | |---|--|----------------------------------|------|--------|-------|-----------|------------------------------|------------------------|---| | Toxicological analysis of aerosols derived | Pearce, K., Gray, N.,
Gaur, P., Jeon, J., | Toxicology in Vitro | 2021 | 69 | - | - | Experimental (cell study) | General toxicity | Population: human bronchial epithelial cells | | nicotine delivery Shannah
ystems using normal Pappas, | Suarez, A.,
Shannahan, J.,
Pappas, R.S. and
Watson-Wright, C. | | | | | | | | Exposure: e-aerosols,
specifically Juul Fruit
Medley (5% nicotine), Logic
Power (2.4% nicotine), and
Mistic (1.8% nicotine) | | | | | | | | | | | Comparator: Juul Fruit
exposure vs Medley
exposure vs Logic Power
exposure | | | | | | | | | | | Modifying factors: n/a | | Cell-specific toxicity
of short-term JUUL
aerosol exposure | Pinkston, R.,
Zaman, H.,
Hossain, E., Penn, A.L. | Respiratory Research | 2020 | 21 | 1 | Jan-15 | Experimental
(cell study) | Cytotoxicity | Population: human lung epithelial cells and murine macrophages | | to human bronchial
epithelial cells and
murine macrophages | and Noël, A. | | | | | | | | Exposure: JUUL crème brûlée-flavored aerosols | | exposed at the air-liquid interface | | | | | | | | | Comparator: exposure vs no exposure (pre/post) | | | | | | | | | | | Modifying factors: n/a | | The toxic potential of
a fourth-generation
E-cigarette on human | Rankin, G.D.,
Wingfors, H., Uski, O.,
Hedman, L., Ekstrand- | Journal of Applied
Toxicology | 2019 | 39 | 8 | 1143-1154 | Experimental (cell study) | General toxicity | Population: human lung
epithelial cell lines; distal
lung tissue explants | | lung cell lines and
tissue explants | Hammarström, B.,
Bosson, J. and
Lundbäck, M | | | | | | | | Exposure: e-cigarette vapour extract from fourth-generation e-cigarette devices | | | | | | | | | | | Comparator: | | | | | | | | | | | Modifying factors: n/a | | Title | Authors | Journal | Year | Volume | Issue | Pages | Study design | Outcome(s)
of interest | Study PECO question | |--|--|------------------------------------|------|--------|------------------------------|--------------|--|---------------------------|--| | Cigarette Smoke and E-Cigarette Vapor Dysregulate Osteoblast Interaction With Titanium Dental | nd E-Cigarette Alanazi, H., Park, H. J. oral implantology and Goncalves, R. B. Osteoblast Interaction | 45 | 1 | 2-Nov | Experimental
(cell study) | Cytotoxicity | Population: osteoblasts Exposure: nicotine-rich e-vapour; nicotine-free e-vapour; cigarette smoke | | | | implant surface | | | | | | | | | Comparator: nicotine-rich e-vapour vs nicotine-free e-vapour vs cigarette smoke Modifying factors: n/a | | Effect of e-cigarettes
on nasal epithelial
cell growth, Ki67
expression, and
pro-inflammatory
cytokine secretion | Rouabhia, M.,
Piche, M.,
Corriveau, M. N.
and Chakir, J. | American Journal of Otolaryngology | 2020 | 41 | 6 | - | Experimental (cell study) | Cytotoxicity | Population: human primary nasal epithelial cells and engineered 3D nasal mucosa tissues Exposure: e-aerosol; cigarette smoke | | | | | | | | | | | Comparator: e-aerosol exposure vs cigarette smoke exposure vs no exposure (pre/post) Modifying factors: n/a | | Chemical Composition
and in Vitro Toxicity
Profile of a Pod-Based
E-Cigarette Aerosol
Compared to
Cigarette Smoke | Rudd, K.,
Stevenson, M.,
Wieczorek, R.,
Pani, J.,
Trelles-Sticken, E.,
Dethloff, O.,
Czekala, L., Simms, L.,
Buchanan, F.,
O'Connell, G.
and Walele, T. | Applied In Vitro
Toxicology | 2020 | 6 | 1 | 15281 | Experimental (cell study) | General toxicity | Population: in vitro micronuceous assays Exposure: e-cigarette aerosol; cigarette smoke Comparator: e-aerosol exposure vs cigarette-exposure Modifying factors: n/a | | Title | Authors | Journal | Year | Volume | Issue | Pages | Study design | Outcome(s)
of interest | Study PECO question | |--|---|--|------|--------|-------|-----------|------------------------------|-------------------------------|--| | E-cigarette aerosol condensate enhances metabolism of benzo(A)pyrene to genotoxic products, and induces CYP1A1 and CYP1B1, likely by activation of the aryl hydrocarbon receptor | Sun, Y.W.,
Kosinska, W. and
Guttenplan, J.B. | International Journal
of Environmental
Research and
Public Health | 2019 | 16 | 14 | 2468 | Experimental
(cell study) | Genotoxicity | Population: human oral keratinocyte cell line Exposure: condensate of e-cigarette aerosol Comparator: exposure vs no exposure Modifying factors: n/a | | Cytotoxicity and
genotoxicity of
E-cigarette generated
aerosols containing
diverse flavoring
products and nicotine
in oral epithelial
cell lines | Tellez, C.S., Juri, D.E., Phillips, L.M., Do, K., Yingling, C.M., Thomas, C.L., Dye, W.W., Wu, G., Kishida, S., Kiyono, T. and Belinsky, S.A. | Toxicological
Sciences | 2021 | 179 | 2 | 220-228 | Experimental
(cell study) | Cytotoxicity;
Genotoxicity | Population: oral epithelial cell lines Exposure: e-liquid products with and without nicotine Comparator: exposure vs no exposure; with vs without nicotine Modifying factors: n/a | | Impact of Atomizer Age and Flavor on in Vitro Toxicity of Aerosols from a Third-Generation Electronic Cigarette against Human Oral Cells | Ureña, J.F.,
Ebersol, L.A.,
Silakov, A., Elias, R.J.
and Lambert, J.D. | Chemical Research
in Toxicology | 2020 | 33 | 10 | 2527-2537 | Experimental
(cell study) | Cytotoxicity | Population: human oral cells Exposure: e-aerosols from third-generation e-cigarette devices Comparator: e-aerosol flavour; age of device atomiser Modifying factors: n/a | | A comparative in vitro
toxicity assessment
of electronic vaping
product e-liquids and
aerosols with tobacco
cigarette smoke | Wieczorek, R.,
Phillips, G.,
Czekala, L.,
Sticken, E.T.,
O'Connell, G.,
Simms, L., Rudd, K.,
Stevenson, M. and
Walele, T | Toxicology in Vitro | 2020 | 66 | - | - | Experimental
(cell study) | General toxicity | Population: bacterial reverse mutation and in vitro micronucleus assays Exposure: electronic vaping product aerosols; e-liquids Comparator: cigarette smoke Modifying factors: | Table 5 continued | Title | Authors | Journal | Year | Volume | Issue | Pages | Study
design | Outcome(s)
of interest | Study PECO question | |---|--|--------------------------------|------|--------|-------|-----------|------------------------------|--|---| | Chemical Elements in
Electronic Cigarette
Solvents and Aerosols
Inhibit Mitochondrial
Reductases
and Induce | Williams, M.,
Ventura, J., Loza, A.,
Wang, Y. and
Talbot, P | Nicotine & Tobacco
Research | 2020 | 22 | Supp1 | S14-S24 | Experimental
(cell study) | Toxicant identification & quantification; General toxicity | Population: human bronchial epithelial cells Exposure: propylene glycol, glycerin, popular e-cigarette refills in | | Oxidative Stress | | | | | | | | | aerosol form Comparator: exposure vs no exposure (pre/post) | | | | | | | | | | | Modifying factors: n/a | | Acute Effects of
Electronic Cigarette
Inhalation on the
Vasculature and the
Conducting Airways | Antoniewicz, L. and
Brynedal, A. and
Hedman, L. and
Lundback, M. and
Bosson, J. A. | Cardiovascular
toxicology | 2019 | 19 | 5 | 441-450 | Prospective
cohort study | Vascular function;
Acute toxicity;
Pulmonary
function | Population: humans (adults) Exposure: ENDS and ENNDS Comparator: exposure vs no exposure Modifying factors: n/a | | Biomarkers of Exposure Among "Dual Users" of Tobacco Cigarettes and Electronic Cigarettes in Canada | Czoli, C.D., Fong, G.T.,
Goniewicz, M.L. and
Hammond, D. | Nicotine & Tobacco
Research | 2019 | 21 | 9 | 1259-1266 | Prospective
cohort study | Biomarkers of
exposure among
dual users | Population: adult dual users of e-cigarettes and convention cigarettes Exposure: e-cigarettes; conventional cigarettes Comparator: e-cigarette exposure vs cigarette exposure vs dual exposure vs no exposure Modifying factors: n/a | | A Longitudinal Study of Exposure to Tobacco-Related Toxicants and Subsequent Respiratory Symptoms Among U.S. Adults with Varying E-cigarette Use Status | Dai, H. and Khan, A.S. | Nicotine & Tobacco
Research | 2020 | 22 | Supp1 | S61-S69 | Prospective cohort study | Biomarkers of
exposure to
tobacco-related
toxicants in
e-cig users | Population: humans (adults) Exposure: e-cigarettes; conventional cigarettes Comparator: e-cigarette exposure vs dual exposure vs no exposure Modifying factors: n/a | | Title | Authors | Journal | Year | Volume | Issue | Pages | Study design | Outcome(s)
of interest | Study PECO question | |---|--|--|------|--------|-------|---------|--------------------------|---------------------------|---| | An epidemiologic and clinical description of | Hughes, A. and
Hendrickson, R. G. | Clinical Toxicology | 2019 | 57 | 4 | 287-293 | Prospective cohort study | General toxicity | Population: humans (adults and children) | | e-cigarette toxicity | | | | | | | | | Exposure: e-liquid refill containers or fluid (adults); ingestion of refill liquid (children) | | | | | | | | | | | Comparator: exposure vs no exposure | | | | | | | | | | | Modifying factors: n/a | | Acute exposures to e-cigarettes | Obertova, N.,
Navratil, T., Zak, I., | Basic and Clinical
Pharmacology and | 2020 | 127 | 1 | 39-46 | Prospective cohort study | General toxicity | Population: adolescents and children | | and heat-not-burn products reported to the Czech Toxicological Information Centre | and Zakharov, S. | Toxicology | | | | | | | Exposure: e-liquid cartridge, refillable tank, and heat-not-burn product refills | | over a 7-year period
(2012-2018) | | | | | | | | | Comparator: exposure vs no exposure (pre/post) | | | | | | | | | | | Modifying factors: n/a | | Ascorbic acid prevents vascular endothelial | Rezk-Hanna, M.,
Seals, D.R., | Journal of the
American Heart | 2021 | 10 | 5 | - | Prospective cohort study | General toxicity | Population: young adult habitual hookah smokers | | dysfunction induced
by electronic hookah
(Waterpipe) vaping | Rossman, M.J.,
Gupta, R., Nettle, C.O.,
Means, A., Dobrin, D., | Association | | | | | | | Exposure:
e-hookah vapour | | (waterpipe) vaping | Cheng, C.W.,
Brecht, M.L., | | | | | | | | Comparator: exposure vs no exposure (pre/post) | | | Mosenifar, Z.,
Araujo, J.A. and
Benowitz, N. L. | | | | | | | | Modifying factors: ascorbic acid | Table 5 continued | Title | Authors | Journal | Year | Volume | Issue | Pages | Study design | Outcome(s)
of interest | Study PECO question | |---|--|---|------|--------|-------|---------|-----------------------------|---|--| | Exposure to Nicotine and Toxicants Among Dual Users of Tobacco Cigarettes and E-Cigarettes: Population Assessment of Tobacco and Health (PATH) Study, 2013-2014 | Smith, D.M., Christensen, C., van Bemmel, D., Borek, N., Ambrose, B., Erives, G., Niaura, R., Edwards, K.C., Stanton, C.A., Blount, B.C. and Wang, L., Feng, J., Jarrett, J.M., Ward, C.D., Hatsukami, D., Hecht, S.S., Kimmel, H.L., Travers, M., Hyland A. and Goniewicz, M.L. | Nicotine & Tobacco
Research | 2021 | 23 | 5 | 790-797 | Prospective cohort study | Biomarkers of
exposure among
dual users | Population: adult dual users of e-cigarettes and combustible cigarettes Exposure: e-cigarettes and combustible cigarettes Comparator: dual users vs exclusive e-cigarette users vs exclusive combustible cigarette users Modifying factors: n/a | | Acute Effects of Heat-Not-Burn, Electronic Vaping, and Traditional Tobacco Combustion Cigarettes: the Sapienza University of Rome-Vascular Assessment of Proatherosclerotic Effects of Smoking (SUR - VAPES) 2 Randomized Trial | Biondi-Zoccai, G. and Sciarretta, S. and Bullen, C. and Nocella, C. and Violi, F. and Loffredo, L. and Pignatelli, P. and Peruzzi, M. and Marullo, A. G. M. and et al. | Journal of the american heart association | 2019 | 8 | 6 | e010455 | Randomised
control trial | Cardiotoxicity | Population: healthy smokers Exposure: e-cigarettes Comparator: heat-not-burn cigarettes and traditional tobacco combustion cigarettes Modifying factors: n/a | | Short-term high
wattage e-cigarette
cessation improves
cardiorespiratory
outcomes in regular
users: a randomized
crossover trial | Chaumont, M. and
El Channan, M. and
Bernard, A. and
Lesage, A. and
Deprez, G. and
Van Muylem, A.
and Schaefer, T.
and Faoro, V. and
Van De Borne, P. | Journal of
Hypertension | 2019 | 37 | - | e8-e9 | Randomised
control trial | Cardiorespiratory
toxicity | Population: e-cigarette users Exposure: e-cigarettes Comparator: nicotine containing vs nictotine-free vs no exposure Modifying factors: n/a | | Title | Authors | Journal | Year | Volume | Issue | Pages | Study design | Outcome(s)
of interest | Study PECO question | |--|---|--------------------------------|------|--------|-------|---------------|-----------------------------|--|--| | Short halt in vaping modifies cardiorespiratory | Chaumont, M. and
Tagliatti, V. and
Channan, E. M. | American Journal of Physiology | 2020 | 318 | 2 | L331-
L344 | Randomised control trial | Cardiorespiratory toxicity | Population: e-cigarette users | | parameters and
urine metabolome:
a randomized trial | and Colet, J. M.
and Bernard, A.
and Morra, S. and
Deprez, G. and
Van Muylem, A. | | | | | | | | Exposure: e-cigarettes Comparator: nicotine containing vs nictotine-free vs no exposure | | | and Debbas, N. and
Schaefer, T. and et al. | | | | | | | | Modifying factors: n/a | | A randomized controlled study in healthy participants to explore the exposure continuum when smokers switch to a tobacco heating product or an E-cigarette relative to cessation | McEwan, M., Gale, N.,
Ebajemito, J.K.,
Camacho, O.M.,
Hardie, G.,
Proctor, C.J.
and Murphy, J | Toxicology reports | 2021 | 8 | - |
994-1001 | Randomised control trial | Changes to levels
of tobacco-related
biomarkers when
switching to
e-cigarettes | Population: healthy smokers Exposure: e-cigarettes, heated tobacco products Comparator: e-cigarette exposure vs heated tobacco exposure vs no exposure Modifying factors: n/a | | Effects of Electronic
Cigarette Constituents
on the Human Lung:
a Pilot Clinical Trial | Song MA,
Reisinger SA,
Freudenheim JL,
Brasky TM, Mathé EA,
McElroy JP,
Nickerson QA,
Weng DY,
Wewers MD,
Shields PG. | Cancer prevention research | 2020 | 13 | 2 | 145-152 | Randomised
control trial | Cardiorespiratory
toxicity;
Pulmonary
toxicity | Population: never smokers (adults) Exposure: e-cigs containing only 50% propylene glycol (PG) and 50% vegetable glycerin Comparator: exposure vs no exposure Modifying factors: n/a | | Systematic review of
biomarker findings
from clinical studies of
electronic cigarettes
and heated tobacco | Akiyama, Y. and
Sherwood, N. | Toxicology Reports | 2021 | 8 | - | 282-294 | Systematic review | Changes to levels
of tobacco-related
biomarkers when
switching to
e-cigarettes | Population: humans (adults) Exposure: e-cigarettes and heated tobacco products Comparator: | | products | | | | | | | | | combustible cigarettes Modifying factors: n/a | | Title | Authors | Journal | Year | Volume | Issue | Pages | Study design | Outcome(s)
of interest | Study PECO question | |--|--|-----------------------------------|------|--------|-------|-----------|----------------------|--|---| | Correction to: The oral health impact of electronic cigarette use: a systematic review | Yang, I., Sandeep S.,
and Rodriguez, J. | Critical Reviews
in Toxicology | 2020 | 50 | 2 | 97-127 | Systematic
review | Oral health impact | Population: humans (adults) Exposure: e-cigarettes Comparator: exposure vs no exposure; combustible cigarettes Modifying factors: n/a | | Genotoxic and
Carcinogenic Potential
of Compounds
Associated with
Electronic Cigarettes:
A Systematic Review | Armendáriz-Castillo I,
Guerrero S,
Vera-Guapi A,
Cevallos-Vilatuña T,
García-Cárdenas JM,
Guevara-Ramírez P,
López-Cortés A,
Pérez-Villa A,
Yumiceba V,
Zambrano AK,
Leone PE. | BioMed Research
International | 2019 | - | - | - | Systematic
review | Genotoxicity;
Carcinogenic
potential | Population: humans, animals, in vitro Exposure: 50 individual chemical constituents Comparator: exposure vs no exposure Modifying factors: n/a | | Carcinogen Biomarkers in the Urine of Electronic Cigarette Users and Implications for the Development of Bladder Cancer: A Systematic Review | Bjurlin, M. A. and
Matulewicz, R. S.
and Roberts, T. R.
and Dearing, B. A.
and Schatz, D. and
Sherman, S. and
Gordon, T. and
Shahawy, O. E. | European urology
oncology | 2020 | 7 | - | 30029-8 | Systematic
review | Carcinogenic
potential | Population: humans (adults) Exposure: e-cigarettes Comparator: exposure vs no expsoure Modifying factors: n/a | | The Evolving
Landscape of
e-Cigarettes:
A Systematic Review
of Recent Evidence | Bozier, J. and
Chivers, E. K. and
Chapman, D. G. and
Larcombe, A. N. and
Bastian, N. A. and
Masso-Silva, J. A.
and Byun, M. K. and
McDonald, C. F.
and Crotty Alex
and er, L. E. and
Ween, M. P. | Chest | 2020 | 157 | 5 | 1362-1390 | Systematic
review | General toxicity | Population: humans (adults) Exposure: e-cigarettes Comparator: exposure vs no exposure; traditional combustible cigarettes Modifying factors: including/excluding nicotine | | Title | Authors | Journal | Year | Volume | Issue | Pages | Study design | Outcome(s)
of interest | Study PECO question | |--|--|--|------|--------|-------|-----------|----------------------|--|---| | Lung damage caused
by heated tobacco
products and
electronic nicotine
delivery systems:
A systematic review | Bravo-Gutierrez, O. A.
and Falfan-Valencia, R.
and Ramirez-
Venegas, A. and
Sansores, R. H. and
Ponciano-Rodriguez,
G. and Perez-Rubio, G. | International Journal
of Environmental
Research and
Public Health | 2021 | 18 | 8 | 4079 | Systematic
review | Cytotoxicity | Population: humans (adults) Exposure: ENDS Comparator: exposure vs no exposure Modifying factors: n/a | | Metal/Metalloid Levels
in Electronic Cigarette
Liquids, Aerosols, and
Human Biosamples:
A Systematic Review | Zhao, D.,
Aravindakshan, A.,
Hilpert, M.,
Olmedo, P.,
Rule, A.M.,
Navas-Acien, A.
and Aherrera, A. | Environmental
Health Perspectives | 2020 | 128 | 3 | - | Systematic
review | Toxicant identification & quantification; Biomarkers of exposure to tobacco-related toxicants in e-cig users | Population: e-cigarette users Exposure: metal/metalloid Comparator: conventional cigarette users; cigar users Modifying factors: n/a | | Exposure of vapers
to formaldehyde
and acrolein:
A systematic review | Dupont, P. and
Aubin, H. J. | Revue des Maladies
Respiratoires | 2019 | 36 | 7 | 752-800 | Systematic
review | Toxicant identification & quantification | Population: e-cigarette users Exposure: formaldehyde and acrolein Comparator: exposure vs no exposure Modifying factors: n/a | | Health Effects of Trace
Metals in Electronic
Cigarette Aerosols-
a Systematic Review | Gaur, S. and
Agnihotri, R. | Biological Trace
Element Research | 2019 | 188 | 2 | 295-315 | Systematic
review | Carcinogenic potential | Population: animals; in vitro Exposure: trace metals via e-aerosols Comparator: exposure vs no exposure Modifying factors: n/a | | Vaping-Related
Acute Parenchymal
Lung Injury:
A Systematic Review | Jonas, A. M. and
Raj, R. | Chest | 2020 | 158 | 4 | 1555-1565 | Systematic
review | Pulmonary
toxicity | Population: humans, animals, in vitro Exposure: e-aerosol Comparator: exposure vs no exposure (pre/post) Modifying factors: n/a | | Title | Authors | Journal | Year | Volume | Issue | Pages | Study design | Outcome(s)
of interest | Study PECO question | |---|--|--|------|--------|-------|-------|----------------------|---------------------------|---| | The cardiovascular effects of electronic cigarettes: A systematic review of experimental studies | Kennedy, C.D.,
van Schalkwyk, M.C.,
McKee, M.
and Pisinger, C | Preventive Medicine | 2019 | 127 | - | - | Systematic
review | Cardiotoxicity | Population:
humans, animals, in vitro | | | | | | | | | | | Exposure: e-cigarettes | | | | | | | | | | | Comparator: exposure vs no exposure | | | | | | | | | | | Modifying factors: n/a | | Environmental contaminants | Porpora, M.G.,
Piacenti, I., | Toxics | 2019 | 7 | 1 | 11 | Systematic review | Developmental toxicity | Population:
pre-term babies | | exposure and preterm birth: A systematic review | Scaramuzzino, S.,
Masciullo, L.,
Rech, F. and
Benedetti Panici, P | | | | | | | | Exposure: exposure to environmental toxic compounds (including e-aerosols) in the mother or gestational compartment (e.g., amniotic fluid, umbilical cord blood, or placental tissue) during pregnancy Comparator: pre-term babies vs full-term babies Modifying factors: n/a | | Vaping'- a trojan horse
against fight toward
tobacco use and
cancer: A systematic
review of the
existing evidence | Sharma, H. and
Verma, S. | Indian Journal
of Medical and
Paediatric Oncology | 2020 | 41 | 3 | - | Systematic
review | General toxicity | Population: humans Exposure: e-cigarettes Comparator: exposure vs no exposure Modifying factors: n/a | | The effects of e-cigarette vapor components on the morphology and function of the male and female reproductive systems: A systematic review | Szumilas, K.,
Szumilas, P.,
Grzywacz, A.
and Wilk, A. | International Journal
of Environmental
Research and
Public Health | 2020 | 17 | 17 | 6152 | Systematic
review | Reproductive toxicity | Population: animals; in vitro Exposure: e-cigarette vapour | | | | | | | | | | | Comparator: exposure vs no exposure | | | | | | | | | | | Modifying factors: n/a | | Title | Authors | Journal | Year | Volume | Issue |
Pages | Study design | Outcome(s)
of interest | Study PECO question | |--|---|--|------|--------|-------|--------|----------------------|---------------------------|---| | A systematic literature
review of E-cigarette-
related illness and
injury: Not just for
the respirologist | Tzortzi, A.,
Kapetanstrataki, M.,
Evangelopoulou, V.
and Behrakis, P. | International Journal
of Environmental
Research and
Public Health | 2020 | 17 | 7 | 2248 | Systematic
review | General toxicity | Population: patients admitted as a result of e-cigarette-related injury Exposure: e-cigarettes Comparator: exposure vs no exposure (pre/post) Modifying factors: n/a | | The role of vitamin
E acetate (VEA) and
its derivatives in the
vaping associated
lung injury: systematic
review of evidence | Xantus, G., Anna
Gyarmathy, V.,
Johnson, C.A.,
Sanghera, P.,
Zavori, L. and
Kanizsai, P.L. | Critical Reviews
in Toxicology | 2021 | 51 | 1 | 15-23 | Systematic
review | Pulmonary
toxicity | Population: humans Exposure: vitamin E acetate Comparator: exposure vs no exposure Modifying factors: n/a | | The oral health
impact of electronic
cigarette use:
a systematic review | Yang, I., Sandeep, S. and Rodriguez, J | Critical Reviews
in Toxicology | 2020 | 50 | 2 | 97-127 | Systematic
review | General toxicity | Population: e-cigarette users; users of traditional cigarettes Exposure: e-cigarette vapour Comparator: exposure vs no exposure; traditional cigarettes Modifying factors: n/a | # **Appendix F: Plain-English summary** #### Box 1: Plain-English summary #### What are electronic cigarettes? - Electronic cigarettes (e-cigarettes), commonly known as vapes, are devices that electronically heat liquids, known as e-liquids, which turn into a mist (aerosol) that is then breathed into the lungs. - E-liquids can contain nicotine and a large number other chemicals. There have been reports of over 200 chemicals that are used in e-liquids. #### Why did we do this report? • There are a lot of chemicals in e-cigarettes but we do not know if they are safe or if they can harm your health. #### What did we do? - We looked at what information was available on chemicals used in e-cigarettes from: - Scientific studies; and - Chemical assessment data which looks at hazards and risks to health and the environment. #### What did we find? - There was limited information available about if the chemicals used in e-cigarettes are harmful to health. There was no information about if long-term use of these chemicals in e-cigarettes were safe or harmful to health. - Some chemicals, for example, some flavours, are approved for use in foods or medicine, but are not safe to inhale. - Missing data or limited information does not mean that the chemicals used in e-cigarettes are safe to inhale. - More information and data on the short and long term effects of inhaling these chemicals is needed to know if they are safe or if they harm your health.