MEDIA RELEASE

24 SEPTEMBER 2014

NHMRC the principal funder of Australian cancer research, report finds

NHMRC provided more than half a billion dollars towards Australian cancer research between 2006-11, making it the ‘principal funder of cancer research’, according to a report released by Cancer Australia today.

The report presents findings from an audit of cancer research investment and covers the amount of funding by organisation, the amount directed to each tumour type, and a description of investment versus burden of disease, amongst other analyses.

NHMRC is described as the single largest investor in cancer research in Australia, having funded more than 1060 research projects and programs worth $568 million over the five year period.

NHMRC accounted for 56% of all funding nationwide, while other Australian government bodies such as the Australian Research Council, Department of Health, Department of Industry and Cancer Australia, contributed 10% between them.

NHMRC CEO Professor Anderson welcomed the report, noting NHMRC’s strong reputation for funding excellent research.

“This report outlines the outstanding efforts of the research community so far, and although there have been dramatic improvements in diagnosis, treatment and survival for a number of cancers, there is much we still don’t know about this devastating disease,” Professor Anderson said.

“Thankfully there are many researchers with great ideas to help fill those gaps. As the country’s biggest funder of cancer research, it is crucial that we support the very best ideas and that every dollar spent goes towards those with the greatest potential to improve the health of Australians,” he said.

“We have incredibly rigorous assessment processes, and analyses on many occasions have showed that NHMRC funded research is high impact and high quality.”

The report found that the direction of research varied considerably between NHMRC and other bodies such as cancer councils, foundations and philanthropic bodies.

Between 2009-11, other funding bodies invested primarily in treatment research (35%), followed by early detection and diagnosis (23%), understanding the biology of cancer cells (18%) and preventing cancer (2%).

By contrast, most of NHMRC funding went towards cancer biology research (45%), treatment research (23%), early detection and diagnosis (10%) and preventing cancer (3%).
"While we ensure that the best ideas receive funding, NHMRC does not favour one theme of cancer research over another and our grants are largely investigator-initiated. In saying that, it is very difficult to develop treatments for something you don’t understand, so I think the balance is spot on," Professor Anderson said.

"The audit findings also reflect the idea that our researchers have been very responsive to the knowledge base over time. Since 2003, NHMRC has funded increasingly less biology (from 59%-45%), and more treatment research (from 14%-23%), which reflects our researchers learning more and more about the disease and perhaps developing more robust and sound proposals for treatment research," he said.

"It’s also good to know that our research is in alignment with that of other funding bodies so we are not duplicating effort. That is utterly crucial in tackling diseases of this magnitude.”

Cancer Australia’s report is available on their website.

NHMRC Media: 0422 008 512
(02) 6217 9121
media@nhmrc.gov.au

NHMRC Cancer Research Highlights

Dr Peter Parsons, Queensland Institute of Medical Research
Development Grant, $260,669 (2011 - 2012)

Dr Parsons and his team are currently developing a cancer drug, EBC-46, derived from a shrub that is native to rainforests west of Cairns. Animal experiments have revealed the drug’s efficacy destroying or significantly shrinking tumours, with few side effects.

Professor David Huang, Walter and Eliza Hall Institute
Research Fellowship, $690,082 (2008 - 2012)

Professor Huang and his team developed a new class of anti-cancer agent called ABT-199 to treat chronic lymphocytic leukaemia (CLL), the most common type of leukaemia. Now in clinical trials, ABT-199 is given to patients as a tablet once a day and works by blocking the function of a protein in cancer cells that prevents CLL cells from dying.

Associate Professor Ingrid Winkler, Mater Medical Research Institute
Project Grant, $434,883 (2009 - 2011)

Associate Professor Winkler and her team discovered the molecular switch that the body uses to put bone marrow cells to sleep and protected during chemotherapy, or awake and regenerating the blood and immune system following chemotherapy. The finding will help to minimise damage to important bone marrow cells during chemotherapy and enhance the success of bone marrow transplantation.